Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Immunity ; 56(6): 1255-1268.e5, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37059107

RESUMO

In early life, susceptibility to invasive infection skews toward a small subset of microbes, whereas other pathogens associated with diseases later in life, including Streptococcus pneumoniae (Spn), are uncommon among neonates. To delineate mechanisms behind age-dependent susceptibility, we compared age-specific mouse models of invasive Spn infection. We show enhanced CD11b-dependent opsonophagocytosis by neonatal neutrophils improved protection against Spn during early life. The augmented function of neonatal neutrophils was mediated by higher CD11b surface expression at the population level due to dampened efferocytosis, which also resulted in more CD11bhi "aged" neutrophils in peripheral blood. Dampened efferocytosis during early life could be attributed to the lack of CD169+ macrophages in neonates and reduced systemic expressions of multiple efferocytic mediators, including MerTK. On experimentally impairing efferocytosis later in life, CD11bhi neutrophils increased and protection against Spn improved. Our findings reveal how age-dependent differences in efferocytosis determine infection outcome through the modulation of CD11b-driven opsonophagocytosis and immunity.


Assuntos
Neutrófilos , Fagocitose , Camundongos , Animais , Humanos , Macrófagos/metabolismo , Streptococcus pneumoniae , c-Mer Tirosina Quinase
2.
PLoS Pathog ; 20(5): e1012111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718049

RESUMO

Infants are highly susceptible to invasive respiratory and gastrointestinal infections. To elucidate the age-dependent mechanism(s) that drive bacterial spread from the mucosa, we developed an infant mouse model using the prevalent pediatric respiratory pathogen, Streptococcus pneumoniae (Spn). Despite similar upper respiratory tract (URT) colonization levels, the survival rate of Spn-infected infant mice was significantly decreased compared to adults and corresponded with Spn dissemination to the bloodstream. An increased rate of pneumococcal bacteremia in early life beyond the newborn period was attributed to increased bacterial translocation across the URT barrier. Bacterial dissemination in infant mice was independent of URT monocyte or neutrophil infiltration, phagocyte-derived ROS or RNS, inflammation mediated by toll-like receptor 2 or interleukin 1 receptor signaling, or the pore-forming toxin pneumolysin. Using molecular barcoding of Spn, we found that only a minority of bacterial clones in the nasopharynx disseminated to the blood in infant mice, indicating the absence of robust URT barrier breakdown. Rather, transcriptional profiling of the URT epithelium revealed a failure of infant mice to upregulate genes involved in the tight junction pathway. Expression of many such genes was also decreased in early life in humans. Infant mice also showed increased URT barrier permeability and delayed mucociliary clearance during the first two weeks of life, which corresponded with tighter attachment of bacteria to the respiratory epithelium. Together, these results demonstrate a window of vulnerability during postnatal development when altered mucosal barrier function facilitates bacterial dissemination.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Animais , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/imunologia , Camundongos , Humanos , Animais Recém-Nascidos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Mucosa Respiratória/microbiologia , Mucosa Respiratória/metabolismo , Feminino , Nasofaringe/microbiologia
3.
PLoS Pathog ; 19(8): e1011509, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37540710

RESUMO

Among the many oral streptococci, Streptococcus pneumoniae (Spn) stands out for the capacity of encapsulated strains to cause invasive infection. Spread beyond upper airways, however, is a biological dead end for the organism, raising the question of the benefits of expending energy to coat its surface in a thick layer of capsular polysaccharide (CPS). In this study, we compare mutants of two serotypes expressing different amounts of CPS and test these in murine models of colonization, invasion infection and transmission. Our analysis of the effect of CPS amount shows that Spn expresses a capsule of sufficient thickness to shield its surface from the deposition of complement and binding of antibody to underlying epitopes. While effective shielding is permissive for invasive infection, its primary contribution to the organism appears to be in the dynamics of colonization. A thicker capsule increases bacterial retention in the nasopharynx, the first event in colonization, and also impedes IL-17-dependent clearance during late colonization. Enhanced colonization is associated with increased opportunity for host-to-host transmission. Additionally, we document substantial differences in CPS amount among clinical isolates of three common serotypes. Together, our findings show that CPS amount is highly variable among Spn and could be an independent determinant affecting host interactions.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Animais , Camundongos , Streptococcus pneumoniae/metabolismo , Streptococcus , Polissacarídeos/metabolismo , Nasofaringe/microbiologia , Nariz , Infecções Pneumocócicas/microbiologia , Cápsulas Bacterianas/genética
4.
PLoS Pathog ; 17(4): e1009158, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33819312

RESUMO

Binding of Streptococcus pneumoniae (Spn) to nasal mucus leads to entrapment and clearance via mucociliary activity during colonization. To identify Spn factors allowing for evasion of mucus binding, we used a solid-phase adherence assay with immobilized mucus of human and murine origin. Spn bound large mucus particles through interactions with carbohydrate moieties. Mutants lacking neuraminidase A (nanA) or neuraminidase B (nanB) showed increased mucus binding that correlated with diminished removal of terminal sialic acid residues on bound mucus. The non-additive activity of the two enzymes raised the question why Spn expresses two neuraminidases and suggested they function in the same pathway. Transcriptional analysis demonstrated expression of nanA depends on the enzymatic function of NanB. As transcription of nanA is increased in the presence of sialic acid, our findings suggest that sialic acid liberated from host glycoconjugates by the secreted enzyme NanB induces the expression of the cell-associated enzyme NanA. The absence of detectable mucus desialylation in the nanA mutant, in which NanB is still expressed, suggests that NanA is responsible for the bulk of the modification of host glycoconjugates. Thus, our studies describe a functional role for NanB in sialic acid sensing in the host. The contribution of the neuraminidases in vivo was then assessed in a murine model of colonization. Although mucus-binding mutants showed an early advantage, this was only observed in a competitive infection, suggesting a complex role of neuraminidases. Histologic examination of the upper respiratory tract demonstrated that Spn stimulates mucus production in a neuraminidase-dependent manner. Thus, an increase production of mucus containing secretions appears to be balanced, in vivo, by decreased mucus binding. We postulate that through the combined activity of its neuraminidases, Spn evades mucus binding and mucociliary clearance, which is needed to counter neuraminidase-mediated stimulation of mucus secretions.


Assuntos
Transporte Biológico/efeitos dos fármacos , Ácido N-Acetilneuramínico/farmacologia , Neuraminidase/metabolismo , Neuraminidase/farmacologia , Animais , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/efeitos dos fármacos , Glicosídeo Hidrolases/metabolismo , Camundongos Endogâmicos C57BL , Muco , Ácido N-Acetilneuramínico/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/metabolismo
5.
Infect Immun ; 90(12): e0047122, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36409115

RESUMO

Streptococcus pneumoniae (Spn) strains cause pneumonia that kills millions every year worldwide. Spn produces Ply, a hemolysin that lyses erythrocytes releasing hemoglobin, and also produces the pro-oxidant hydrogen peroxide (Spn-H2O2) during growth. The hallmark of the pathophysiology of hemolytic diseases is the oxidation of hemoglobin, but oxidative reactions catalyzed by Spn-H2O2 have been poorly studied. We characterized the oxidation of hemoglobin by Spn-H2O2. We prepared a series of single-mutant (ΔspxB or ΔlctO), double-mutant (ΔspxB ΔlctO), and complemented strains in TIGR4, D39, and EF3030. We then utilized an in vitro model with oxyhemoglobin to demonstrate that oxyhemoglobin was oxidized rapidly, within 30 min of incubation, by Spn-H2O2 to methemoglobin and that the main source of Spn-H2O2 was pyruvate oxidase (SpxB). Moreover, extended incubation caused the release and the degradation of heme. We then assessed oxidation of hemoglobin and heme degradation by other bacterial inhabitants of the respiratory tract. All hydrogen peroxide-producing streptococci tested caused the oxidation of hemoglobin and heme degradation, whereas bacterial species that produce <1 µM H2O2 neither oxidized hemoglobin nor degraded heme. An ex vivo bacteremia model confirmed that oxidation of hemoglobin and heme degradation occurred concurrently with hemoglobin that was released from erythrocytes by Ply. Finally, gene expression studies demonstrated that heme, but not red blood cells or hemoglobin, induced upregulated transcription of the spxB gene. Oxidation of hemoglobin may be important for pathogenesis and for the symbiosis of hydrogen peroxide-producing bacteria with other species by providing nutrients such as iron.


Assuntos
Heme , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Heme/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Oxiemoglobinas/metabolismo , Hemoglobinas/metabolismo , Streptococcus/metabolismo , Oxirredução , Estresse Oxidativo , Catálise
6.
Genome Res ; 29(2): 304-316, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30679308

RESUMO

The routine use of genomics for disease surveillance provides the opportunity for high-resolution bacterial epidemiology. Current whole-genome clustering and multilocus typing approaches do not fully exploit core and accessory genomic variation, and they cannot both automatically identify, and subsequently expand, clusters of significantly similar isolates in large data sets spanning entire species. Here, we describe PopPUNK (Population Partitioning Using Nucleotide K -mers), a software implementing scalable and expandable annotation- and alignment-free methods for population analysis and clustering. Variable-length k-mer comparisons are used to distinguish isolates' divergence in shared sequence and gene content, which we demonstrate to be accurate over multiple orders of magnitude using data from both simulations and genomic collections representing 10 taxonomically widespread species. Connections between closely related isolates of the same strain are robustly identified, despite interspecies variation in the pairwise distance distributions that reflects species' diverse evolutionary patterns. PopPUNK can process 103-104 genomes in a single batch, with minimal memory use and runtimes up to 200-fold faster than existing model-based methods. Clusters of strains remain consistent as new batches of genomes are added, which is achieved without needing to reanalyze all genomes de novo. This facilitates real-time surveillance with consistent cluster naming between studies and allows for outbreak detection using hundreds of genomes in minutes. Interactive visualization and online publication is streamlined through the automatic output of results to multiple platforms. PopPUNK has been designed as a flexible platform that addresses important issues with currently used whole-genome clustering and typing methods, and has potential uses across bacterial genetics and public health research.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Genoma Bacteriano , Software , Bactérias/classificação , Infecções Bacterianas/epidemiologia , Variação Genética , Genômica/métodos
7.
J Immunol ; 204(1): 101-111, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31776202

RESUMO

Streptococcus pneumoniae is a major cause of pneumonia, wherein infection of respiratory mucosa drives a robust influx of neutrophils. We have previously shown that S. pneumoniae infection of the respiratory epithelium induces the production of the 12-lipoxygenase (12-LOX)-dependent lipid inflammatory mediator hepoxilin A3, which promotes recruitment of neutrophils into the airways, tissue damage, and lethal septicemia. Pneumolysin (PLY), a member of the cholesterol-dependent cytolysin (CDC) family, is a major S. pneumoniae virulence factor that generates ∼25-nm diameter pores in eukaryotic membranes and promotes acute inflammation, tissue damage, and bacteremia. We show that a PLY-deficient S. pneumoniae mutant was impaired in triggering human neutrophil transepithelial migration in vitro. Ectopic production of PLY endowed the nonpathogenic Bacillus subtilis with the ability to trigger neutrophil recruitment across human-cultured monolayers. Purified PLY, several other CDC family members, and the α-toxin of Clostridium septicum, which generates pores with cross-sectional areas nearly 300 times smaller than CDCs, reproduced this robust neutrophil transmigration. PLY non-pore-forming point mutants that are trapped at various stages of pore assembly did not recruit neutrophils. PLY triggered neutrophil recruitment in a 12-LOX-dependent manner in vitro. Instillation of wild-type PLY but not inactive derivatives into the lungs of mice induced robust 12-LOX-dependent neutrophil migration into the airways, although residual inflammation induced by PLY in 12-LOX-deficient mice indicates that 12-LOX-independent pathways also contribute to PLY-triggered pulmonary inflammation. These data indicate that PLY is an important factor in promoting hepoxilin A3-dependent neutrophil recruitment across pulmonary epithelium in a pore-dependent fashion.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Infiltração de Neutrófilos/imunologia , Streptococcus pneumoniae/patogenicidade , Estreptolisinas/metabolismo , Migração Transendotelial e Transepitelial/imunologia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/imunologia , Animais , Bacillus subtilis/genética , Bacillus subtilis/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Linhagem Celular , Membrana Celular/patologia , Clostridium septicum/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Infecções Pneumocócicas/patologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Estreptolisinas/genética , Fatores de Virulência/metabolismo
8.
Am J Respir Crit Care Med ; 203(9): 1099-1111, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166473

RESUMO

Rationale: Cross-sectional human data suggest that enrichment of oral anaerobic bacteria in the lung is associated with an increased T-helper cell type 17 (Th17) inflammatory phenotype.Objectives: In this study, we evaluated the microbial and host immune-response dynamics after aspiration with oral commensals using a preclinical mouse model.Methods: Aspiration with a mixture of human oral commensals (MOC; Prevotella melaninogenica, Veillonella parvula, and Streptococcus mitis) was modeled in mice followed by variable time of killing. The genetic backgrounds of mice included wild-type, MyD88-knockout, and STAT3C backgrounds.Measurements and Main Results: 16S-rRNA gene sequencing characterized changes in microbiota. Flow cytometry, cytokine measurement via Luminex and RNA host-transcriptome sequencing was used to characterize the host immune phenotype. Although MOC aspiration correlated with lower-airway dysbiosis that resolved within 5 days, it induced an extended inflammatory response associated with IL-17-producing T cells lasting at least 14 days. MyD88 expression was required for the IL-17 response to MOC aspiration, but not for T-cell activation or IFN-γ expression. MOC aspiration before a respiratory challenge with S. pneumoniae led to a decrease in hosts' susceptibility to this pathogen.Conclusions: Thus, in otherwise healthy mice, a single aspiration event with oral commensals is rapidly cleared from the lower airways but induces a prolonged Th17 response that secondarily decreases susceptibility to S. pneumoniae. Translationally, these data implicate an immunoprotective role of episodic microaspiration of oral microbes in the regulation of the lung immune phenotype and mitigation of host susceptibility to infection with lower-airway pathogens.


Assuntos
Infecções Pneumocócicas/prevenção & controle , Streptococcus pneumoniae , Células Th17/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/fisiologia , Infecções Pneumocócicas/etiologia , Prevotella melaninogenica , Streptococcus mitis , Veillonella
9.
Proc Natl Acad Sci U S A ; 116(17): 8493-8498, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30971494

RESUMO

Bacterial pneumonia remains a leading cause of morbidity and mortality worldwide. A defining feature of pneumonia is lung injury, leading to protracted suffering and vulnerability long after bacterial clearance. Little is known about which cells are damaged during bacterial pneumonia and if the regenerative process can be harnessed to promote tissue repair and host recovery. Here, we show that infection of mice with Streptococcus pneumoniae (Sp) caused substantial damage to alveolar epithelial cells (AEC), followed by a slow process of regeneration. Concurrent with AEC regeneration, the expression of miRNA-302 is elevated in AEC. Treatment of Sp-infected mice with miRNA-302 mimics improved lung functions, host recovery, and survival. miRNA-302 mediated its therapeutic effects, not by inhibiting apoptosis and preventing damage, but by promoting proliferation of local epithelial progenitor cells to regenerate AEC. These results demonstrate the ability of microRNA-based therapy to promote AEC regeneration and enhance host recovery from bacterial pneumonia.


Assuntos
MicroRNAs/farmacologia , Pneumonia Pneumocócica/fisiopatologia , Regeneração/efeitos dos fármacos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Pneumonia Pneumocócica/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/farmacologia , Streptococcus pneumoniae
10.
Proc Natl Acad Sci U S A ; 116(5): 1745-1754, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30635416

RESUMO

The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of (i) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and (ii) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non-S. aureus spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.


Assuntos
Infecções Comunitárias Adquiridas/microbiologia , Staphylococcus aureus Resistente à Meticilina/genética , Virulência/genética , Animais , Antibacterianos/farmacologia , Criança , Clorexidina/farmacologia , Infecções Comunitárias Adquiridas/tratamento farmacológico , Genoma Bacteriano/genética , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana/métodos , Mupirocina/farmacologia , Filogenia , Plasmídeos/genética , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia
11.
PLoS Pathog ; 14(10): e1007396, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30379943

RESUMO

Young age is a risk factor for prolonged colonization by common pathogens residing in their upper respiratory tract (URT). Why children present with more persistent colonization is unknown and there is relatively little insight into the host-pathogen interactions that contribute to persistent colonization. To identify factors permissive for persistent colonization during infancy, we utilized an infant mouse model of Streptococcus pneumoniae colonization in which clearance from the mucosal surface of the URT requires many weeks to months. Loss of a single bacterial factor, the pore-forming toxin pneumolysin (Ply), and loss of a single host factor, IL-1α, led to more persistent colonization. Exogenous administration of Ply promoted IL-1 responses and clearance, and intranasal treatment with IL-1α was sufficient to reduce colonization density. Major factors known to affect the duration of natural colonization include host age and pneumococcal capsular serotype. qRT-PCR analysis of the uninfected URT mucosa showed reduced baseline expression of genes involved in IL-1 signaling in infant compared to adult mice. In line with this observation, IL-1 signaling was important in initiating clearance in adult mice but had no effect on early colonization of infant mice. In contrast to the effect of age, isogenic constructs of different capsular serotype showed differences in colonization persistence but induced similar IL-1 responses. Altogether, this work underscores the importance of toxin-induced IL-1α responses in determining the outcome of colonization, clearance versus persistence. Our findings about IL-1 signaling as a function of host age may provide an explanation for the increased susceptibility and more prolonged colonization during early childhood.


Assuntos
Envelhecimento , Cápsulas Bacterianas/fisiologia , Interleucina-1/metabolismo , Infecções Pneumocócicas/transmissão , Sorogrupo , Streptococcus pneumoniae/crescimento & desenvolvimento , Animais , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Interleucina-1/genética , Camundongos , Camundongos Endogâmicos C57BL , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/imunologia , Estreptolisinas/metabolismo
12.
Annu Rev Microbiol ; 69: 425-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26488280

RESUMO

Respiratory tract infections are an important cause of morbidity and mortality worldwide. Chief among these are infections involving the lower airways. The opportunistic bacterial pathogens responsible for most cases of pneumonia can cause a range of local and invasive infections. However, bacterial colonization (or carriage) in the upper airway is the prerequisite of all these infections. Successful colonizers must attach to the epithelial lining, grow on the nutrient-limited mucosal surface, evade the host immune response, and transmit to a susceptible host. Here, we review the molecular mechanisms underlying these conserved stages of carriage. We also examine how the demands of colonization influence progression to disease. A range of bacteria can colonize the upper airway; nevertheless, we focus on strategies shared by many respiratory tract opportunistic pathogens. Understanding colonization opens a window to the evolutionary pressures these pathogens face within their animal hosts and that have selected for attributes that contribute to virulence and pathogenesis.


Assuntos
Fenômenos Fisiológicos Bacterianos , Infecções Respiratórias/microbiologia , Animais , Bactérias/classificação , Bactérias/imunologia , Bactérias/metabolismo , Humanos , Evasão da Resposta Imune , Infecções Oportunistas/imunologia , Infecções Oportunistas/microbiologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/transmissão
13.
Bioinformatics ; 34(24): 4310-4312, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30535304

RESUMO

Summary: Genome-wide association studies (GWAS) in microbes have different challenges to GWAS in eukaryotes. These have been addressed by a number of different methods. pyseer brings these techniques together in one package tailored to microbial GWAS, allows greater flexibility of the input data used, and adds new methods to interpret the association results. Availability and implementation: pyseer is written in python and is freely available at https://github.com/mgalardini/pyseer, or can be installed through pip. Documentation and a tutorial are available at http://pyseer.readthedocs.io. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Bactérias/crescimento & desenvolvimento , Estudos de Associação Genética , Software , Biologia Computacional , Modelos Estatísticos
14.
PLoS Pathog ; 13(12): e1006665, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29267378

RESUMO

Colonization of the human nasopharynx by pneumococcus is extremely common and is both the primary reservoir for transmission and a prerequisite for disease. Current vaccines targeting the polysaccharide capsule effectively prevent colonization, conferring herd protection within vaccinated communities. However, these vaccines cover only a subset of all circulating pneumococcal strains, and serotype replacement has been observed. Given the success of pneumococcal conjugate vaccine (PCV) in preventing colonization in unvaccinated adults within vaccinated communities, reducing nasopharyngeal colonization has become an outcome of interest for novel vaccines. Here, we discuss the immunological mechanisms that control nasopharyngeal colonization, with an emphasis on findings from human studies. Increased understanding of these immunological mechanisms is required to identify correlates of protection against colonization that will facilitate the early testing and design of novel vaccines.


Assuntos
Infecções Pneumocócicas/imunologia , Vacinas Pneumocócicas/imunologia , Portador Sadio/imunologia , Humanos , Nasofaringe/microbiologia , Vacinas Conjugadas/imunologia
15.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29311231

RESUMO

Person-to-person transmission of Streptococcus pneumoniae (the pneumococcus) may occur via environmental sources in close contact with carriers. Pneumococcal polysaccharide capsules, the determinant of serotype (or type), are heterogeneous in structure and amount, and these differences affect rates of transmission. In this study, we examined the contribution of capsule and its variations to the maintenance of pneumococcal viability under starvation conditions. S. pneumoniae retained its ability to colonize infant mice even after incubation for 24 h in phosphate-buffered saline at 25°C. The expression of capsule by the cps locus prolonged survival under these and other nutrient-poor conditions. Analysis of capsule-switch constructs showed that strain-to-strain differences in survival were due to capsule type rather than genetic background. The addition of glucose was sufficient to rescue the survival defect of the capsule-deficient derivative, demonstrating that in the absence of capsule, survival depends upon nutrient availability. During starvation, there was a decrease in capsule size and amount of capsular polysaccharide that was dependent on bacterial viability and the presence of the cps locus. These observations suggest that pneumococci catabolize their own capsular polysaccharide using the genes involved in its biosynthesis to maintain viability when other carbon sources are unavailable. Our findings describe a new role of the pneumococcal capsule: the prolongation of viability under nutrient-limiting conditions as would be encountered during periods when the organism is between hosts.


Assuntos
Cápsulas Bacterianas/fisiologia , Streptococcus pneumoniae/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Infecções Pneumocócicas/microbiologia
16.
PLoS Pathog ; 12(10): e1005887, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27732665

RESUMO

Herein, we studied a virulent isolate of the leading bacterial pathogen Streptococcus pneumoniae in an infant mouse model of colonization, disease and transmission, both with and without influenza A (IAV) co-infection. To identify vulnerable points in the multiple steps involved in pneumococcal pathogenesis, this model was utilized for a comprehensive analysis of population bottlenecks. Our findings reveal that in the setting of IAV co-infection the organism must pass through single cell bottlenecks during bloodstream invasion from the nasopharynx within the host and in transmission between hosts. Passage through these bottlenecks was not associated with genetic adaptation by the pathogen. The bottleneck in transmission occurred between bacterial exit from one host and establishment in another explaining why the number of shed organisms in secretions is critical to overcoming it. These observations demonstrate how viral infection, and TLR-dependent innate immune responses it stimulates and that are required to control it, drive bacterial contagion.


Assuntos
Coinfecção , Infecções por Orthomyxoviridae/complicações , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/transmissão , Animais , Coinfecção/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Vírus da Influenza A , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/microbiologia , Streptococcus pneumoniae
17.
Blood ; 127(20): 2460-71, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-26989200

RESUMO

Maintenance of myeloid cell homeostasis requires continuous turnover of phagocytes from the bloodstream, yet whether environmental signals influence phagocyte longevity in the absence of inflammation remains unknown. Here, we show that the gut microbiota regulates the steady-state cellular lifespan of neutrophils and inflammatory monocytes, the 2 most abundant circulating myeloid cells and key contributors to inflammatory responses. Treatment of mice with broad-spectrum antibiotics, or with the gut-restricted aminoglycoside neomycin alone, accelerated phagocyte turnover and increased the rates of their spontaneous apoptosis. Metagenomic analyses revealed that neomycin altered the abundance of intestinal bacteria bearing γ-d-glutamyl-meso-diaminopimelic acid, a ligand for the intracellular peptidoglycan sensor Nod1. Accordingly, signaling through Nod1 was both necessary and sufficient to mediate the stimulatory influence of the flora on myeloid cell longevity. Stimulation of Nod1 signaling increased the frequency of lymphocytes in the murine intestine producing the proinflammatory cytokine interleukin 17A (IL-17A), and liberation of IL-17A was required for transmission of Nod1-dependent signals to circulating phagocytes. Together, these results define a mechanism through which intestinal microbes govern a central component of myeloid homeostasis and suggest perturbations of commensal communities can influence steady-state regulation of cell fate.


Assuntos
Microbioma Gastrointestinal/fisiologia , Homeostase , Peptidoglicano/farmacologia , Fagócitos/citologia , Transferência Adotiva , Animais , Animais Congênicos , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Ácido Diaminopimélico/análogos & derivados , Ácido Diaminopimélico/farmacologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Interleucina-17/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Neutrófilos/citologia , Proteína Adaptadora de Sinalização NOD1/deficiência , Proteína Adaptadora de Sinalização NOD1/fisiologia , Proteína Adaptadora de Sinalização NOD2/deficiência , Proteína Adaptadora de Sinalização NOD2/fisiologia , Fagócitos/efeitos dos fármacos , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/fisiologia , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/fisiologia
18.
PLoS Pathog ; 11(6): e1005004, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26107875

RESUMO

Infections are a common cause of infant mortality worldwide, especially due to Streptococcus pneumoniae. Colonization is the prerequisite to invasive pneumococcal disease, and is particularly frequent and prolonged in children, though the mechanisms underlying this susceptibility are unknown. We find that infant mice exhibit prolonged pneumococcal carriage, and are delayed in recruiting macrophages, the effector cells of clearance, into the nasopharyngeal lumen. This lack of macrophage recruitment is paralleled by a failure to upregulate chemokine (C-C) motif ligand 2 (Ccl2 or Mcp-1), a macrophage chemoattractant that is required in adult mice to promote clearance. Baseline expression of Ccl2 and the related chemokine Ccl7 is higher in the infant compared to the adult upper respiratory tract, and this effect requires the infant microbiota. These results demonstrate that signals governing macrophage recruitment are altered at baseline in infant mice, which prevents the development of appropriate innate cell infiltration in response to pneumococcal colonization, delaying clearance of pneumococcal carriage.


Assuntos
Movimento Celular/fisiologia , Macrófagos/imunologia , Infecções Pneumocócicas/imunologia , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Quimiocina CCL2/imunologia , Camundongos Endogâmicos C57BL , Nasofaringe/imunologia , Infecções Pneumocócicas/prevenção & controle , Streptococcus pneumoniae/imunologia
19.
Infect Immun ; 84(9): 2714-22, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27400721

RESUMO

One of the least understood aspects of the bacterium Streptococcus pneumoniae (pneumococcus) is its transmission from host to host, the critical first step in both the carrier state and the disease state. To date, transmission models have depended on influenza A virus coinfection, which greatly enhances pneumococcal shedding to levels that allow acquisition by a new host. Here, we describe an infant mouse model that can be utilized to study pneumococcal colonization, shedding, and transmission during bacterial monoinfection. Using this model, we demonstrated that the level of bacterial shedding is highest in pups infected intranasally at age 4 days and peaks over the first 4 days postchallenge. Shedding results differed among isolates of five different pneumococcal types. Colonization density was found to be a major factor in the level of pneumococcal shedding and required expression of capsule. Transmission within a litter occurred when there was a high ratio of colonized "index" pups to uncolonized "contact" pups. Transmission was observed for each of the well-colonizing pneumococcal isolates, with the rate of transmission proportional to the level of shedding. This model can be used to examine bacterial and host factors that contribute to pneumococcal transmission without the effects of viral coinfection.


Assuntos
Animais Recém-Nascidos/microbiologia , Derrame de Bactérias/fisiologia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/transmissão , Streptococcus pneumoniae/isolamento & purificação , Animais , Portador Sadio/microbiologia , Portador Sadio/transmissão , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
20.
PLoS Pathog ; 10(8): e1004339, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25166617

RESUMO

While the importance of transmission of pathogens is widely accepted, there is currently little mechanistic understanding of this process. Nasal carriage of Streptococcus pneumoniae (the pneumococcus) is common in humans, especially in early childhood, and is a prerequisite for the development of disease and transmission among hosts. In this study, we adapted an infant mouse model to elucidate host determinants of transmission of S. pneumoniae from inoculated index mice to uninfected contact mice. In the context of co-infection with influenza A virus, the pneumococcus was transmitted among wildtype littermates, with approximately half of the contact mice acquiring colonization. Mice deficient for TLR2 were colonized to a similar density but transmitted S. pneumoniae more efficiently (100% transmission) than wildtype animals and showed decreased expression of interferon α and higher viral titers. The greater viral burden in tlr2-/- mice correlated with heightened inflammation, and was responsible for an increase in bacterial shedding from the mouse nose. The role of TLR2 signaling was confirmed by intranasal treatment of wildtype mice with the agonist Pam3Cys, which decreased inflammation and reduced bacterial shedding and transmission. Taken together, these results suggest that the innate immune response to influenza virus promotes bacterial shedding, allowing the bacteria to transit from host to host. These findings provide insight into the role of host factors in the increased pneumococcal carriage rates seen during flu season and contribute to our overall understanding of pathogen transmission.


Assuntos
Derrame de Bactérias/fisiologia , Infecções por Orthomyxoviridae/complicações , Infecções Pneumocócicas/transmissão , Receptor 2 Toll-Like/metabolismo , Animais , Animais Recém-Nascidos , Coinfecção , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Vírus da Influenza A , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Streptococcus pneumoniae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA