Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 167(1): 200-15, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25429110

RESUMO

Pectin methylesterase (PME) controls the methylesterification status of pectins and thereby determines the biophysical properties of plant cell walls, which are important for tissue growth and weakening processes. We demonstrate here that tissue-specific and spatiotemporal alterations in cell wall pectin methylesterification occur during the germination of garden cress (Lepidium sativum). These cell wall changes are associated with characteristic expression patterns of PME genes and resultant enzyme activities in the key seed compartments CAP (micropylar endosperm) and RAD (radicle plus lower hypocotyl). Transcriptome and quantitative real-time reverse transcription-polymerase chain reaction analysis as well as PME enzyme activity measurements of separated seed compartments, including CAP and RAD, revealed distinct phases during germination. These were associated with hormonal and compartment-specific regulation of PME group 1, PME group 2, and PME inhibitor transcript expression and total PME activity. The regulatory patterns indicated a role for PME activity in testa rupture (TR). Consistent with a role for cell wall pectin methylesterification in TR, treatment of seeds with PME resulted in enhanced testa permeability and promoted TR. Mathematical modeling of transcript expression changes in germinating garden cress and Arabidopsis (Arabidopsis thaliana) seeds suggested that group 2 PMEs make a major contribution to the overall PME activity rather than acting as PME inhibitors. It is concluded that regulated changes in the degree of pectin methylesterification through CAP- and RAD-specific PME and PME inhibitor expression play a crucial role during Brassicaceae seed germination.


Assuntos
Hidrolases de Éster Carboxílico/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/fisiologia , Lepidium sativum/fisiologia , Proteínas de Plantas/fisiologia , Sementes/fisiologia , Hidrolases de Éster Carboxílico/biossíntese , Hidrolases de Éster Carboxílico/genética , Endosperma/enzimologia , Endosperma/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Hipocótilo/enzimologia , Hipocótilo/fisiologia , Lepidium sativum/enzimologia , Lepidium sativum/genética , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Sementes/enzimologia
2.
Plant Physiol ; 161(1): 305-16, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23129203

RESUMO

The methylesterification status of cell wall homogalacturonans, mediated through the action of pectin methylesterases (PMEs), influences the biophysical properties of plant cell walls such as elasticity and porosity, important parameters for cell elongation and water uptake. The completion of seed germination requires cell wall extensibility changes in both the radicle itself and in the micropylar tissues surrounding the radicle. In wild-type seeds of Arabidopsis (Arabidopsis thaliana), PME activities peaked around the time of testa rupture but declined just before the completion of germination (endosperm weakening and rupture). We overexpressed an Arabidopsis PME inhibitor to investigate PME involvement in seed germination. Seeds of the resultant lines showed a denser methylesterification status of their cell wall homogalacturonans, but there were no changes in the neutral sugar and uronic acid composition of the cell walls. As compared with wild-type seeds, the PME activities of the overexpressing lines were greatly reduced throughout germination, and the low steady-state levels neither increased nor decreased. The most striking phenotype was a significantly faster rate of germination, which was not connected to altered testa rupture morphology but to alterations of the micropylar endosperm cells, evident by environmental scanning electron microscopy. The transgenic seeds also exhibited an apparent reduced sensitivity to abscisic acid with respect to its inhibitory effects on germination. We speculate that PME activity contributes to the temporal regulation of radicle emergence in endospermic seeds by altering the mechanical properties of the cell walls and thereby the balance between the two opposing forces of radicle elongation and mechanical resistance of the endosperm.


Assuntos
Arabidopsis/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/metabolismo , Germinação , Pectinas/metabolismo , Sementes/crescimento & desenvolvimento , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenômenos Biomecânicos , Hidrolases de Éster Carboxílico/genética , Tamanho Celular , Ativação Enzimática , Esterificação , Flores/enzimologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Microscopia Eletrônica de Varredura , Fenótipo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Sementes/enzimologia , Sementes/ultraestrutura , Ácidos Urônicos/metabolismo
3.
J Exp Bot ; 62(10): 3289-309, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21430292

RESUMO

Most plant seeds are dispersed in a dry, mature state. If these seeds are non-dormant and the environmental conditions are favourable, they will pass through the complex process of germination. In this review, recent progress made with state-of-the-art techniques including genome-wide gene expression analyses that provided deeper insight into the early phase of seed germination, which includes imbibition and the subsequent plateau phase of water uptake in which metabolism is reactivated, is summarized. The physiological state of a seed is determined, at least in part, by the stored mRNAs that are translated upon imbibition. Very early upon imbibition massive transcriptome changes occur, which are regulated by ambient temperature, light conditions, and plant hormones. The hormones abscisic acid and gibberellins play a major role in regulating early seed germination. The early germination phase of Arabidopsis thaliana culminates in testa rupture, which is followed by the late germination phase and endosperm rupture. An integrated view on the early phase of seed germination is provided and it is shown that it is characterized by dynamic biomechanical changes together with very early alterations in transcript, protein, and hormone levels that set the stage for the later events. Early seed germination thereby contributes to seed and seedling performance important for plant establishment in the natural and agricultural ecosystem.


Assuntos
Germinação/fisiologia , Sementes/metabolismo , Sementes/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/genética , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA