Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biochem Mol Toxicol ; 33(8): e22345, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31066974

RESUMO

For fasiglifam (TAK875) and its metabolites the substance-specific mechanisms of liver toxicity were studied. Metabolism studies were run to identify a putatively reactive acyl glucuronide metabolite. In vitro cytotoxicity and caspase 3/7 activation were assessed in primary human and dog hepatocytes in 2D and 3D cell culture. Involvement of glutathione (GSH) detoxication system in mediating cytotoxicity was determined by assessing potentiation of cytotoxicity in a GSH depleted in vitro system. In addition, potential mitochondrial liabilities of the compounds were assessed in a whole-cell mitochondrial functional assay. Fasiglifam showed moderate cytotoxicity in human primary hepatocytes in the classical 2D cytotoxicity assays and also in the complex 3D human liver microtissue (hLiMT) after short-term treatment (24 hours or 48 hours) with TC50 values of 56 to 68 µM (adenosine triphosphate endpoint). The long-term treatment for 14 days in the hLiMT resulted in a slight TC50 shift over time of 2.7/3.6 fold lower vs 24-hour treatment indicating possibly a higher risk for cytotoxicity during long-term treatment. Cellular GSH depletion and impairment of mitochondrial function by TAK875 and its metabolites evaluated by Seahorse assay could not be found being involved in DILI reported for TAK875. The acyl glucuronide metabolites of TAK875 have been finally identified to be the dominant reason for liver toxicity.


Assuntos
Benzofuranos/toxicidade , Ácidos Graxos não Esterificados/metabolismo , Fígado/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Sulfonas/toxicidade , Animais , Benzofuranos/metabolismo , Células Cultivadas , Cães , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Sulfonas/metabolismo
2.
Mol Pharm ; 15(8): 3425-3433, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29975542

RESUMO

Cimetidine decreases the renal clearance of metformin by inhibition of renal tubular cation transport, and the underlying molecular mechanisms are still not fully understood. We investigated polarized metformin transport without and with the addition of cimetidine as well as polarized cimetidine transport in double-transfected MDCK-OCT2-MATE1 cells that mimic organic cation transport processes in proximal renal tubule cells and in MDCK vector control and single-transfected MDCK-OCT2 and MDCK-MATE1 cells. At all tested concentrations (1, 10, 100 µM), the intracellular accumulation of cimetidine after administration to the basal compartment was considerably higher in MDCK-OCT2 cells compared to that in all other cells ( p < 0.001). Whereas cimetidine transcellular, basal-to-apical transport was only slightly higher in MDCK-OCT2 cells, the presence of MATE1 in the apical membrane caused a pronounced translocation of cimetidine in both single- and double-transfected cells ( p < 0.001). Transcellular, basal-to-apical metformin net transport was reduced by 89.1, 74.5, and 91.0% in MDCK-OCT2-MATE1 cells after the addition of cimetidine (100 µM) to the basal, the apical, or both compartments ( p < 0.001). In MDCK-MATE1 and MDCK-OCT2-MATE1 cells, transcellular net transport of metformin was inhibited by cimetidine with IC50 values of 8.0 and 6.6 µM, respectively. Our data confirm the relevance of MATE1 and suggest the relevance of OCT2 for the cimetidine-metformin interaction, primarily because OCT2 mediates uptake of the perpetrator cimetidine into renal proximal tubular cells and thereby to the site of the metformin exporter MATE1. This work supports the notion that a thorough understanding of transporter-mediated drug-drug interactions may require investigations on the impact of transporters on cellular uptake and transcellular transport of victim as well as perpetrator drugs.


Assuntos
Cimetidina/farmacologia , Metformina/farmacologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Animais , Cães , Interações Medicamentosas , Células HEK293 , Humanos , Túbulos Renais/citologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Células Madin Darby de Rim Canino , Eliminação Renal/efeitos dos fármacos
3.
Mol Pharm ; 14(9): 2991-2998, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28708400

RESUMO

The weak base memantine is actively secreted into urine, however the underlying mechanisms are insufficiently understood. Potential candidates involved in memantine renal secretion are organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATE1, MATE2-K). The aim of this in vitro study was the examination of the interaction of memantine with OCT2 and MATEs. Memantine transporter inhibition and transport were examined in HEK cells expressing human OCT2, MATE1, or MATE2-K. Monolayers of single- (MDCK-OCT2, MDCK-MATE1) and double-transfected MDCK cells (MDCK-OCT2-MATE1) were used for studies on vectorial, basal to apical memantine transport. Memantine inhibited OCT2-, MATE1-, and MATE2-K-mediated metformin transport with IC50 values of 3.2, 40.9, and 315.3 µM, respectively. In HEK cells, no relevant memantine uptake by OCT2, MATE1, or MATE2-K was detected. Vectorial transport experiments, however, indicated a role of MATE1 for memantine export: After memantine administration to the basal side of the monolayers, memantine cellular accumulation was considerably lower (MDCK-MATE1 vs MDCK control cells, P < 0.01) and memantine transcellular, basal to apical transport was higher in MATE1 expressing cells (MDCK-MATE1 vs MDCK control cells, P < 0.001 at 60 and 180 min). Both effects were abolished upon addition of the MATE inhibitor cimetidine. These experiments suggest a relevant role of MATE1 for renal secretion of memantine. In the clinical setting, renal elimination of memantine could be impaired by coadministration of MATE inhibitors.


Assuntos
Rim/efeitos dos fármacos , Rim/metabolismo , Memantina/farmacologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Cimetidina/farmacologia , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Metformina/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Transportador 2 de Cátion Orgânico/metabolismo
4.
Drug Metab Dispos ; 41(7): 1347-66, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620485

RESUMO

A P-glycoprotein (P-gp) IC50 working group was established with 23 participating pharmaceutical and contract research laboratories and one academic institution to assess interlaboratory variability in P-gp IC50 determinations. Each laboratory followed its in-house protocol to determine in vitro IC50 values for 16 inhibitors using four different test systems: human colon adenocarcinoma cells (Caco-2; eleven laboratories), Madin-Darby canine kidney cells transfected with MDR1 cDNA (MDCKII-MDR1; six laboratories), and Lilly Laboratories Cells--Porcine Kidney Nr. 1 cells transfected with MDR1 cDNA (LLC-PK1-MDR1; four laboratories), and membrane vesicles containing human P-glycoprotein (P-gp; five laboratories). For cell models, various equations to calculate remaining transport activity (e.g., efflux ratio, unidirectional flux, net-secretory-flux) were also evaluated. The difference in IC50 values for each of the inhibitors across all test systems and equations ranged from a minimum of 20- and 24-fold between lowest and highest IC50 values for sertraline and isradipine, to a maximum of 407- and 796-fold for telmisartan and verapamil, respectively. For telmisartan and verapamil, variability was greatly influenced by data from one laboratory in each case. Excluding these two data sets brings the range in IC50 values for telmisartan and verapamil down to 69- and 159-fold. The efflux ratio-based equation generally resulted in severalfold lower IC50 values compared with unidirectional or net-secretory-flux equations. Statistical analysis indicated that variability in IC50 values was mainly due to interlaboratory variability, rather than an implicit systematic difference between test systems. Potential reasons for variability are discussed and the simplest, most robust experimental design for P-gp IC50 determination proposed. The impact of these findings on drug-drug interaction risk assessment is discussed in the companion article (Ellens et al., 2013) and recommendations are provided.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Digoxina/farmacocinética , Medição de Risco , Animais , Transporte Biológico , Células CACO-2 , Cães , Interações Medicamentosas , Humanos , Concentração Inibidora 50 , Células LLC-PK1 , Análise de Componente Principal , Suínos
5.
Drug Metab Dispos ; 41(7): 1367-74, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620486

RESUMO

In the 2012 Food and Drug Administration (FDA) draft guidance on drug-drug interactions (DDIs), a new molecular entity that inhibits P-glycoprotein (P-gp) may need a clinical DDI study with a P-gp substrate such as digoxin when the maximum concentration of inhibitor at steady state divided by IC50 ([I1]/IC50) is ≥0.1 or concentration of inhibitor based on highest approved dose dissolved in 250 ml divide by IC50 ([I2]/IC50) is ≥10. In this article, refined criteria are presented, determined by receiver operating characteristic analysis, using IC50 values generated by 23 laboratories. P-gp probe substrates were digoxin for polarized cell-lines and N-methyl quinidine or vinblastine for P-gp overexpressed vesicles. Inhibition of probe substrate transport was evaluated using 15 known P-gp inhibitors. Importantly, the criteria derived in this article take into account variability in IC50 values. Moreover, they are statistically derived based on the highest degree of accuracy in predicting true positive and true negative digoxin DDI results. The refined criteria of [I1]/IC50 ≥ 0.03 and [I2]/IC50 ≥ 45 and FDA criteria were applied to a test set of 101 in vitro-in vivo digoxin DDI pairs collated from the literature. The number of false negatives (none predicted but DDI observed) were similar, 10 and 12%, whereas the number of false positives (DDI predicted but not observed) substantially decreased from 51 to 40%, relative to the FDA criteria. On the basis of estimated overall variability in IC50 values, a theoretical 95% confidence interval calculation was developed for single laboratory IC50 values, translating into a range of [I1]/IC50 and [I2]/IC50 values. The extent by which this range falls above the criteria is a measure of risk associated with the decision, attributable to variability in IC50 values.


Assuntos
Digoxina/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Árvores de Decisões , Interações Medicamentosas , Humanos , Curva ROC , Estados Unidos , United States Food and Drug Administration
6.
Front Pharmacol ; 13: 1037983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467083

RESUMO

Tumor necrosis factor (TNF) is a pleiotropic cytokine belonging to a family of trimeric proteins with both proinflammatory and immunoregulatory functions. TNF is a key mediator in autoimmune diseases and during the last couple of decades several biologic drugs have delivered new therapeutic options for patients suffering from chronic autoimmune diseases such as rheumatoid arthritis and chronic inflammatory bowel disease. Attempts to design small molecule therapies directed to this cytokine have not led to approved products yet. Here we report the discovery and development of a potent small molecule inhibitor of TNF that was recently moved into phase 1 clinical trials. The molecule, SAR441566, stabilizes an asymmetrical form of the soluble TNF trimer, compromises downstream signaling and inhibits the functions of TNF in vitro and in vivo. With SAR441566 being studied in healthy volunteers we hope to deliver a more convenient orally bioavailable and effective treatment option for patients suffering with chronic autoimmune diseases compared to established biologic drugs targeting TNF.

7.
J Med Chem ; 63(5): 2292-2307, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31596080

RESUMO

The therapeutic success of peptidic GLP-1 receptor agonists for treatment of type 2 diabetes mellitus (T2DM) motivated our search for orally bioavailable small molecules that can activate the GLP-1 receptor (GLP-1R) as a well-validated target for T2DM. Here, the discovery and characterization of a potent and selective positive allosteric modulator (PAM) for GLP-1R based on a 3,4,5,6-tetrahydro-1H-1,5-epiminoazocino[4,5-b]indole scaffold is reported. Optimization of this series from HTS was supported by a GLP-1R ligand binding model. Biological in vitro testing revealed favorable ADME and pharmacological profiles for the best compound 19. Characterization by in vivo pharmacokinetic and pharmacological studies demonstrated that 19 activates GLP-1R as positive allosteric modulator (PAM) in the presence of the much less active endogenous degradation product GLP1(9-36)NH2 of the potent endogenous ligand GLP-1(7-36)NH2. While these data suggest the potential of small molecule GLP-1R PAMs for T2DM treatment, further optimization is still required towards a clinical candidate.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Desenho de Fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Animais , Glicemia/análise , Células Cultivadas , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células HEK293 , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Ratos , Ratos Sprague-Dawley
8.
Neuron ; 36(5): 881-9, 2002 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-12467591

RESUMO

Cyclic nucleotide-gated (CNG) channels play a central role in the conversion of sensory stimuli into electrical signals. CNG channels form heterooligomeric complexes built of A and B subunits. Here, we study the subunit stoichiometry of the native rod CNG channel by chemical crosslinking. The apparent molecular weight (M(w)) of each crosslink product was determined by SDS-PAGE, and its composition was analyzed by Western blotting using antibodies specific for the A1 or B1 subunit. The number of crosslink products and their M(w) as well as the immunological identification of A1 and B1 subunits in the crosslink products led us to conclude that the native rod CNG channel is a tetramer composed of three A1 and one B1 subunit. This is an example of violation of symmetry in tetrameric channels.


Assuntos
Canais Iônicos/química , Subunidades Proteicas/química , Células Fotorreceptoras Retinianas Bastonetes/química , Animais , Anticorpos , Western Blotting , Calibragem , Bovinos , Membrana Celular/química , Reagentes de Ligações Cruzadas , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Proteínas do Olho/química , Proteínas do Olho/isolamento & purificação , Proteínas do Olho/metabolismo , Canais Iônicos/isolamento & purificação , Canais Iônicos/metabolismo , Substâncias Macromoleculares , Modelos Moleculares , Peso Molecular , Subunidades Proteicas/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Succinimidas
9.
FEBS J ; 275(13): 3290-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18485005

RESUMO

The genome of Escherichia coli contains four genes assigned to the peptide transporter (PTR) family. Of these, only tppB (ydgR) has been characterized, and named tripeptide permease, whereas protein functions encoded by the yhiP, ybgH and yjdL genes have remained unknown. Here we describe the overexpression of yhiP as a His-tagged fusion protein in E. coli and show saturable transport of glycyl-sarcosine (Gly-Sar) with an apparent affinity constant of 6.5 mm. Overexpression of the gene also increased the susceptibility of cells to the toxic dipeptide alafosfalin. Transport was strongly decreased in the presence of a protonophore but unaffected by sodium depletion, suggesting H(+)-dependence. This was confirmed by purification of YhiP and TppB by nickel affinity chromatography and reconstitution into liposomes. Both transporters showed Gly-Sar influx in the presence of an artificial proton gradient and generated transport currents on a chip-based sensor. Competition experiments established that YhiP transported dipeptides and tripeptides. Western blot analysis revealed an apparent mass of YhiP of 40 kDa. Taken together, these findings show that yhiP encodes a protein that mediates proton-dependent electrogenic transport of dipeptides and tripeptides with similarities to mammalian PEPT1. On the basis of our results, we propose to rename YhiP as DtpB (dipeptide and tripeptide permease B), by analogy with the nomenclature in other bacteria. We also propose to rename TppB as DtpA, to better describe its function as the first protein of the PTR family characterized in E. coli.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Proteínas de Transporte/química , Cromatografia de Afinidade/métodos , Clonagem Molecular , Modelos Biológicos , Peptídeos/química , Proteolipídeos/química , Prótons , Especificidade por Substrato , Fatores de Tempo
10.
Cancer Chemother Pharmacol ; 81(6): 1095-1103, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29675746

RESUMO

PURPOSE: The primary aim of this study was to determine cabazitaxel's affinity for the ABCB1/P-glycoprotein (P-gp) transporter compared to first-generation taxanes. METHODS: We determined the kinetics of drug accumulation and retention using [14C]-labeled taxanes in multidrug-resistant (MDR) cells. In addition, membrane-enriched fractions isolated from doxorubicin-selected MES-SA/Dx5 cells were used to determine sodium orthovanadate-sensitive ATPase stimulation after exposure to taxanes. Custom [3H]-azido-taxane analogues were synthesized for the photoaffinity labeling of P-gp. RESULTS: The maximum intracellular drug concentration was achieved faster with [14C]-cabazitaxel (5 min) than [14C]-docetaxel (15-30 min). MDR cells accumulated twice as much cabazitaxel than docetaxel, and these levels could be restored to parental levels in the presence of the P-gp inhibitor PSC-833 (valspodar). Efflux in drug-free medium confirmed that MDR cells retained twice as much cabazitaxel than docetaxel. There was a strong association (r2 = 0.91) between the degree of taxane resistance conferred by P-gp expression and the accumulation differences observed with the two taxanes. One cell model expressing low levels of P-gp was not cross-resistant to cabazitaxel while demonstrating modest resistance to docetaxel. Furthermore, there was a 1.9 × reduction in sodium orthovanadate-sensitive ATPase stimulation resulting from treatment with cabazitaxel compared to docetaxel. We calculated a dissociation constant (Kd) value of 1.7 µM for [3H]-azido-docetaxel and ~ 7.5 µM for [3H]-azido-cabazitaxel resulting in a 4.4 × difference in P-gp labeling, and cold docetaxel was a more effective competitor than cabazitaxel. CONCLUSION: Our studies confirm that cabazitaxel is more active in ABCB1(+) cell models due to its reduced affinity for P-gp compared to docetaxel.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Docetaxel/farmacologia , Taxoides/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Ciclosporinas/farmacologia , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fatores de Tempo
11.
J Mol Biol ; 394(4): 708-17, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19782088

RESUMO

Cellular uptake of di- and tripeptides has been characterized in numerous organisms, and various transporters have been identified. In contrast, structural information on peptide transporters is very sparse. Here, we have cloned, overexpressed, purified, and biochemically characterized DtpD (YbgH) from Escherichia coli, a prokaryotic member of the peptide transporter family. Its homologues in mammals, PEPT1 (SLC15A1) and PEPT2 (SLC15A2), not only transport peptides but also are of relevance for uptake of drugs as they accept a large spectrum of peptidomimetics such as beta-lactam antibiotics, antivirals, peptidase inhibitors, and others as substrates. Uptake experiments indicated that DtpD functions as a canonical peptide transporter and is, therefore, a valid model for structural studies of this family of proteins. Blue native polyacrylamide gel electrophoresis, gel filtration, and transmission electron microscopy of single-DtpD particles suggest that the transporter exists in a monomeric form when solubilized in detergent. Two-dimensional crystallization of DtpD yielded first tubular crystals that allowed the determination of a projection structure at better than 19 A resolution. This structure of DtpD represents the first structural view of a member of the peptide transporter family.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Cromatografia em Gel , Cristalização , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Microscopia Eletrônica de Transmissão , Estrutura Terciária de Proteína
12.
J Biol Chem ; 282(5): 2832-9, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17158458

RESUMO

The ydgR gene of Escherichia coli encodes a protein of the proton-dependent oligopeptide transporter (POT) family. We cloned YdgR and overexpressed the His-tagged fusion protein in E. coli BL21 cells. Bacterial growth inhibition in the presence of the toxic phosphonopeptide alafosfalin established YgdR functionality. Transport was abolished in the presence of the proton ionophore carbonyl cyanide p-chlorophenylhydrazone, suggesting a proton-coupled transport mechanism. YdgR transports selectively only di- and tripeptides and structurally related peptidomimetics (such as aminocephalosporins) with a substrate recognition pattern almost identical to the mammalian peptide transporter PEPT1. The YdgR protein was purified to homogeneity from E. coli membranes. Blue native-polyacrylamide gel electrophoresis and transmission electron microscopy of detergent-solubilized YdgR suggest that it exists in monomeric form. Transmission electron microscopy revealed a crown-like structure with a diameter of approximately 8 nm and a central density. These are the first structural data obtained from a proton-dependent peptide transporter, and the YgdR protein seems an excellent model for studies on substrate and inhibitor interactions as well as on the molecular architecture of cell membrane peptide transporters.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Simportadores/química , Simportadores/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Primers do DNA , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Escherichia coli/química , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Mamíferos , Transportador 1 de Peptídeos , Reação em Cadeia da Polimerase , Proteolipídeos/metabolismo , Simportadores/genética
13.
Physiology (Bethesda) ; 21: 93-102, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16565475

RESUMO

Uptake of nutrients into cells is essential to life and occurs in all organisms at the expense of energy. Whereas in most prokaryotic and simple eukaryotic cells electrochemical transmembrane proton gradients provide the central driving force for nutrient uptake, in higher eukaryotes it is more frequently coupled to sodium movement along the transmembrane sodium gradient, occurs via uniport mechanisms driven by the substrate gradient only, or is linked to the countertransport of a similar organic solute. With the cloning of a large number of mammalian nutrient transport proteins, it became obvious that a few "archaic'' transporters that utilize a transmembrane proton gradient for nutrient transport into cells can still be found in mammals. The present review focuses on the electrogenic peptide transporters as the best studied examples of proton-dependent nutrient transporters in mammals and summarizes the most recent findings on their physiological importance. Taking peptide transport as a general phenomenon found in nature, we also include peptide transport mechanisms in bacteria, yeast, invertebrates, and lower vertebrates, which are not that often addressed in physiology journals.


Assuntos
Células Eucarióticas/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Células Procarióticas/fisiologia , Prótons , Sequência de Aminoácidos , Animais , Bactérias , Transporte Biológico , Humanos , Invertebrados , Proteínas de Membrana Transportadoras/química , Dados de Sequência Molecular , Transportador 1 de Peptídeos , Filogenia , Especificidade por Substrato , Simportadores/química , Simportadores/fisiologia , Vertebrados , Leveduras
14.
EMBO J ; 21(9): 2087-94, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11980705

RESUMO

Cyclic nucleotide-gated (CNG) channels play a central role in the conversion of sensory information, such as light and scent, into primary electrical signals. We have purified the CNG channel from bovine retina and have studied it using electron microscopy and image processing. We present the structure of the channel to 35 A resolution. This three-dimensional reconstruction provides insight into the architecture of the protein, suggesting that the cyclic nucleotide-binding domains, which initiate the response to ligand, 'hang' below the pore-forming part of the channel, attached by narrow linkers. The structure also suggests that the four cyclic nucleotide-binding domains present in each channel form two distinct domains, lending structural weight to the suggestion that the four subunits of the CNG channels are arranged as a pair of dimers.


Assuntos
Canais Iônicos/química , Segmento Externo da Célula Bastonete/química , Animais , Bovinos , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Canais Iônicos/fisiologia , Canais Iônicos/ultraestrutura , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Segmento Externo da Célula Bastonete/fisiologia , Transdução de Sinais/fisiologia
15.
J Biol Chem ; 277(6): 4558-64, 2002 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-11723128

RESUMO

Small conductance Ca(2+)-activated potassium (SK) channels underlie the afterhyperpolarization that follows the action potential in many types of central neurons. SK channels are voltage-independent and gated solely by intracellular Ca(2+) in the submicromolar range. This high affinity for Ca(2+) results from Ca(2+)-independent association of the SK alpha-subunit with calmodulin (CaM), a property unique among the large family of potassium channels. Here we report the solution structure of the calmodulin binding domain (CaMBD, residues 396-487 in rat SK2) of SK channels using NMR spectroscopy. The CaMBD exhibits a helical region between residues 423-437, whereas the rest of the molecule lacks stable overall folding. Disruption of the helical domain abolishes constitutive association of CaMBD with Ca(2+)-free CaM, and results in SK channels that are no longer gated by Ca(2+). The results show that the Ca(2+)-independent CaM-CaMBD interaction, which is crucial for channel function, is at least in part determined by a region different in sequence and structure from other CaM-interacting proteins.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Canais de Potássio Cálcio-Ativados , Canais de Potássio/metabolismo , Sequência de Aminoácidos , Animais , Calmodulina/química , Imuno-Histoquímica , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Canais de Potássio/química , Conformação Proteica , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA