Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(43): 16276-16288, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37857355

RESUMO

Nationally reported greenhouse gas inventories are a core component of the Paris Agreement's transparency framework. Comparisons with emission estimates derived from atmospheric observations help identify improvements to reduce uncertainties and increase the confidence in reported values. To facilitate comparisons over the contiguous United States, we present a 0.1° × 0.1° gridded inventory of annual 2012-2018 anthropogenic methane emissions, allocated to 26 individual source categories, with scale-dependent error estimates. Our inventory is consistent with the U.S. Environmental Protection Agency (EPA) Inventory of U.S. Greenhouse Gas Emissions and Sinks (GHGI), submitted to the United Nations in 2020. Total emissions and patterns (spatial/temporal) reflect the activity and emission factor data underlying the GHGI, including many updates relative to a previous gridded version of the GHGI that has been extensively compared with observations. These underlying data are not generally available in global gridded inventories, and comparison to EDGAR version 6 shows large spatial differences, particularly for the oil and gas sectors. We also find strong regional variability across all sources in annual 2012-2018 spatial trends, highlighting the importance of understanding regional- and facility-level activities. Our inventory represents the first time series of gridded GHGI methane emissions and enables robust comparisons of emissions and their trends with atmospheric observations.


Assuntos
Poluentes Atmosféricos , Gases de Efeito Estufa , Estados Unidos , Metano/análise , Poluentes Atmosféricos/análise , United States Environmental Protection Agency , Incerteza
2.
Environ Sci Technol ; 50(23): 13123-13133, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934278

RESUMO

We present a gridded inventory of US anthropogenic methane emissions with 0.1° × 0.1° spatial resolution, monthly temporal resolution, and detailed scale-dependent error characterization. The inventory is designed to be consistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a wide range of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show large differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.


Assuntos
Poluentes Atmosféricos , Metano , Monitoramento Ambiental , Texas , Estados Unidos , United States Environmental Protection Agency
3.
J Air Waste Manag Assoc ; 58(5): 636-40, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18512440

RESUMO

This paper estimates national methane emissions from solid waste disposal sites in Panama over the time period 1990-2020 using both the 2006 Intergovernmental Panel on Climate Change (IPCC) Waste Model spreadsheet and the default emissions estimate approach presented in the 1996 IPCC Good Practice Guidelines. The IPCC Waste Model has the ability to calculate emissions from a variety of solid waste disposal site types, taking into account country- or region-specific waste composition and climate information, and can be used with a limited amount of data. Countries with detailed data can also run the model with country-specific values. The paper discusses methane emissions from solid waste disposal; explains the differences between the two methodologies in terms of data needs, assumptions, and results; describes solid waste disposal circumstances in Panama; and presents the results of this analysis. It also demonstrates the Waste Model's ability to incorporate landfill gas recovery data and to make projections. The former default method methane emissions estimates are 25 Gg in 1994, and range from 23.1 Gg in 1990 to a projected 37.5 Gg in 2020. The Waste Model estimates are 26.7 Gg in 1994, ranging from 24.6 Gg in 1990 to 41.6 Gg in 2020. Emissions estimates for Panama produced by the new model were, on average, 8% higher than estimates produced by the former default methodology. The increased estimate can be attributed to the inclusion of all solid waste disposal in Panama (as opposed to only disposal in managed landfills), but the increase was offset somewhat by the different default factors and regional waste values between the 1996 and 2006 IPCC guidelines, and the use of the first-order decay model with a time delay for waste degradation in the IPCC Waste Model.


Assuntos
Poluentes Atmosféricos/análise , Metano/análise , Eliminação de Resíduos/estatística & dados numéricos , Algoritmos , Conservação dos Recursos Naturais , Previsões , Órgãos Governamentais , Efeito Estufa , Panamá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA