Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int Psychogeriatr ; : 1-49, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329083

RESUMO

OBJECTIVE: We aim to analyze the efficacy and safety of TMS on cognition in mild cognitive impairment (MCI), Alzheimer's disease (AD), AD-related dementias, and nondementia conditions with comorbid cognitive impairment. DESIGN: Systematic review, Meta-Analysis. SETTING: We searched MEDLINE, Embase, Cochrane database, APA PsycINFO, Web of Science, and Scopus from January 1, 2000, to February 9, 2023. PARTICIPANTS AND INTERVENTIONS: RCTs, open-label, and case series studies reporting cognitive outcomes following TMS intervention were included. MEASUREMENT: Cognitive and safety outcomes were measured. Cochrane Risk of Bias for RCTs and MINORS (Methodological Index for Non-Randomized Studies) criteria were used to evaluate study quality. This study was registered with PROSPERO (CRD42022326423). RESULTS: The systematic review included 143 studies (n = 5,800 participants) worldwide, encompassing 94 RCTs, 43 open-label prospective, 3 open-label retrospective, and 3 case series. The meta-analysis included 25 RCTs in MCI and AD. Collectively, these studies provide evidence of improved global and specific cognitive measures with TMS across diagnostic groups. Only 2 studies (among 143) reported 4 adverse events of seizures: 3 were deemed TMS unrelated and another resolved with coil repositioning. Meta-analysis showed large effect sizes on global cognition (Mini-Mental State Examination (SMD = 0.80 [0.26, 1.33], p = 0.003), Montreal Cognitive Assessment (SMD = 0.85 [0.26, 1.44], p = 0.005), Alzheimer's Disease Assessment Scale-Cognitive Subscale (SMD = -0.96 [-1.32, -0.60], p < 0.001)) in MCI and AD, although with significant heterogeneity. CONCLUSION: The reviewed studies provide favorable evidence of improved cognition with TMS across all groups with cognitive impairment. TMS was safe and well tolerated with infrequent serious adverse events.

2.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177534

RESUMO

In blood-oxygen-level-dependent (BOLD)-based resting-state functional (RS-fMRI) studies, usage of multi-echo echo-planar-imaging (ME-EPI) is limited due to unacceptable late echo times when high spatial resolution is used. Equipped with high-performance gradients, the compact 3T MRI system (C3T) enables a three-echo whole-brain ME-EPI protocol with smaller than 2.5 mm isotropic voxel and shorter than 1 s repetition time, as required in landmark fMRI studies. The performance of the ME-EPI was comprehensively evaluated with signal variance reduction and region-of-interest-, seed- and independent-component-analysis-based functional connectivity analyses and compared with a counterpart of single-echo EPI with the shortest TR possible. Through the multi-echo combination, the thermal noise level is reduced. Functional connectivity, as well as signal intensity, are recovered in the medial orbital sulcus and anterior transverse collateral sulcus in ME-EPI. It is demonstrated that ME-EPI provides superior sensitivity and accuracy for detecting functional connectivity and/or brain networks in comparison with single-echo EPI. In conclusion, the high-performance gradient enabled high-spatial-temporal resolution ME-EPI would be the method of choice for RS-fMRI study on the C3T.


Assuntos
Mapeamento Encefálico , Imagem Ecoplanar , Imagem Ecoplanar/métodos , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
3.
Neuroradiology ; 63(2): 167-177, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388947

RESUMO

Since the relatively recent regulatory approval for clinical use in both Europe and North America, 7-Tesla (T) MRI has been adopted for clinical practice at our institution. Based on this experience, this article reviews the unique features of 7-T MRI neuroimaging and addresses the challenges of establishing a 7-T MRI clinical practice. The underlying fundamental physics principals of high-field strength MRI are briefly reviewed. Scanner installation, safety considerations, and artifact mitigation techniques are discussed. Seven-tesla MRI case examples of neurologic diseases including epilepsy, vascular abnormalities, and tumor imaging are presented to illustrate specific applications of 7-T MRI. The advantages of 7-T MRI in conjunction with advanced neuroimaging techniques such as functional MRI are presented. Seven-tesla MRI produces more detailed information and, in some cases, results in specific diagnoses where previous 3-T studies were insufficient. Still, persistent technical issues for 7-T scanning present ongoing challenges for radiologists.


Assuntos
Epilepsia , Imageamento por Ressonância Magnética , Artefatos , Epilepsia/diagnóstico por imagem , Europa (Continente) , Humanos , Neuroimagem
4.
Neuroradiology ; 63(3): 439-445, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33025042

RESUMO

PURPOSE: We investigated the hypothesis that increasing fMRI temporal resolution using a multiband (MB) gradient echo-echo planar imaging (GRE-EPI) pulse sequence provides fMRI language maps of higher statistical quality than those acquired with a traditional GRE-EPI sequence. METHODS: This prospective study enrolled 29 consecutive patients receiving language fMRI prior to a potential brain resection for tumor, AVM, or epilepsy. A 4-min rhyming task was performed at 3.0 Tesla with a traditional GRE-EPI pulse sequence (TR = 2000, TE = 30, matrix = 64/100%, slice = 4/0, FOV = 24, slices = 30, time points = 120) and an additional MB GRE-EPI pulse sequence with an acceleration factor of 6 (TR = 333, TE = 30, matrix 64/100%, slice = 4/0, FOV = 24, time points = 720). Spatially filtered t statistical maps were generated. Volumes of interest (VOIs) were drawn around activations at Broca's, dorsolateral prefrontal cortex, Wernicke's, and the visual word form areas. The t value maxima were measured for the overall brain and each of the VOIs. A paired t test was performed for the corresponding traditional and MB GRE-EPI measurements. RESULTS: The mean age of subjects was 42.6 years old (18-75). Sixty-two percent were male. The average overall brain t statistic maxima for the MB pulse sequence (t = 15.4) was higher than for the traditional pulse sequence (t = 9.3, p = < .0001). This also held true for Broca's area (p < 0.0001), Wernicke's area (p < .0001), dorsolateral prefrontal cortex (p < .0001), and the visual word form area (p < .0001). CONCLUSION: A MB GRE-EPI fMRI pulse sequence employing high temporal resolution provides clinical fMRI language maps of greater statistical significance than those obtained with a traditional GRE-EPI sequence.


Assuntos
Idioma , Imageamento por Ressonância Magnética , Adulto , Mapeamento Encefálico , Imagem Ecoplanar , Humanos , Masculino , Estudos Prospectivos
5.
Cereb Cortex ; 27(3): 2183-2194, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27001680

RESUMO

Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) is an investigational therapy for treatment-resistant obsessive-compulsive disorder. The ability of VC/VS DBS to evoke spontaneous mirth in patients, often accompanied by smiling and laughter, is clinically well documented. However, the neural correlates of DBS-evoked mirth remain poorly characterized. Patients undergoing VC/VS DBS surgery underwent intraoperative evaluation in which mirth-inducing and non-mirth-inducing stimulation localizations were identified. Using dynamic causal modeling (DCM) for fMRI, the effect of mirth-inducing DBS on functional and effective connectivity among established nodes in limbic cortico-striato-thalamo-cortical (CSTC) circuitry was investigated. Both mirth-inducing and non-mirth-inducing VC/VS DBS consistently resulted (conjunction, global null, family-wise error-corrected P < 0.05) in activation of amygdala, ventral striatum, and mediodorsal thalamus. However, only mirth-inducing DBS resulted in functional inhibition of anterior cingulate cortex. Dynamic causal modeling revealed that mirth-inducing DBS enhanced effective connectivity from anterior cingulate to ventral striatum, while attenuating connectivity from thalamus to ventral striatum relative to non-mirth-inducing stimulation. These results suggest that DBS-evoked mood elevation is accompanied by distinct patterns of limbic thalamocortical connectivity. Using the novel combination of DBS-evoked mood alteration and functional MRI in human subjects, we provide new insights into the network-level mechanisms that influence affect.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda , Emoções , Adulto , Afeto , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Período Intraoperatório , Riso/fisiologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Vias Neurais/cirurgia , Procedimentos Neurocirúrgicos , Oxigênio/sangue , Sorriso/fisiologia , Senso de Humor e Humor como Assunto , Adulto Jovem
6.
Brain ; 139(Pt 8): 2198-210, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27329768

RESUMO

Deep brain stimulation is an established neurosurgical therapy for movement disorders including essential tremor and Parkinson's disease. While typically highly effective, deep brain stimulation can sometimes yield suboptimal therapeutic benefit and can cause adverse effects. In this study, we tested the hypothesis that intraoperative functional magnetic resonance imaging could be used to detect deep brain stimulation-evoked changes in functional and effective connectivity that would correlate with the therapeutic and adverse effects of stimulation. Ten patients receiving deep brain stimulation of the ventralis intermedius thalamic nucleus for essential tremor underwent functional magnetic resonance imaging during stimulation applied at a series of stimulation localizations, followed by evaluation of deep brain stimulation-evoked therapeutic and adverse effects. Correlations between the therapeutic effectiveness of deep brain stimulation (3 months postoperatively) and deep brain stimulation-evoked changes in functional and effective connectivity were assessed using region of interest-based correlation analysis and dynamic causal modelling, respectively. Further, we investigated whether brain regions might exist in which activation resulting from deep brain stimulation might correlate with the presence of paraesthesias, the most common deep brain stimulation-evoked adverse effect. Thalamic deep brain stimulation resulted in activation within established nodes of the tremor circuit: sensorimotor cortex, thalamus, contralateral cerebellar cortex and deep cerebellar nuclei (FDR q < 0.05). Stimulation-evoked activation in all these regions of interest, as well as activation within the supplementary motor area, brainstem, and inferior frontal gyrus, exhibited significant correlations with the long-term therapeutic effectiveness of deep brain stimulation (P < 0.05), with the strongest correlation (P < 0.001) observed within the contralateral cerebellum. Dynamic causal modelling revealed a correlation between therapeutic effectiveness and attenuated within-region inhibitory connectivity in cerebellum. Finally, specific subregions of sensorimotor cortex were identified in which deep brain stimulation-evoked activation correlated with the presence of unwanted paraesthesias. These results suggest that thalamic deep brain stimulation in tremor likely exerts its effects through modulation of both olivocerebellar and thalamocortical circuits. In addition, our findings indicate that deep brain stimulation-evoked functional activation maps obtained intraoperatively may contain predictive information pertaining to the therapeutic and adverse effects induced by deep brain stimulation.media-1vid110.1093/brain/aww145_video_abstractaww145_video_abstract.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Neuroimagem Funcional/métodos , Avaliação de Resultados em Cuidados de Saúde , Parestesia/etiologia , Núcleos Ventrais do Tálamo , Idoso , Estimulação Encefálica Profunda/efeitos adversos , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória
7.
Pediatr Radiol ; 47(5): 544-555, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28409252

RESUMO

Pediatric neuroimaging is a complex and specialized field that uses magnetic resonance (MR) imaging as the workhorse for diagnosis. MR protocols should be tailored to the specific indication and reviewed by the supervising radiologist in real time. Targeted advanced imaging sequences can be added to provide information regarding tissue microstructure, perfusion, metabolism and function. In part 2 of this review, we highlight the utility of advanced imaging techniques for superior evaluation of pediatric neurologic disease. We focus on the following techniques, with clinical examples: phase-contrast imaging, perfusion-weighted imaging, vessel wall imaging, diffusion tensor imaging, task-based functional MRI and MR spectroscopy.


Assuntos
Encefalopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Criança , Humanos
8.
Pediatr Radiol ; 47(5): 534-543, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28409254

RESUMO

Pediatric neuroimaging is a complex and specialized field that uses magnetic resonance (MR) imaging as the workhorse for diagnosis. Standard MR techniques used in adult neuroimaging are suboptimal for imaging in pediatrics because there are significant differences in the child's developing brain. These differences include size, myelination and sulcation. MR protocols need to be tailored to the specific indication and reviewed by the supervising radiologist in real time, and the specialized needs of this population require careful consideration of issues such as scan timing, sequence order, sedation, anesthesia and gadolinium administration. In part 1 of this review, we focus on basic protocol development and anatomical characterization. We provide multiple imaging examples optimized for evaluation of supratentorial and infratentorial brain, midline structures, head and neck, and intracranial vasculature.


Assuntos
Encefalopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Criança , Humanos
9.
Surg Radiol Anat ; 38(4): 433-43, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26514961

RESUMO

PURPOSE: The temporal lobe is anatomically and functionally complex. However, relatively few radiologic signs are described to facilitate recognition of temporal lobe sulci and gyri in clinical practice. We devised and tested 8 radiologic signs of temporal lobe anatomy. METHODS: Images from volumetric magnetization-prepared rapid gradient-echo imaging were analyzed of 100 temporal lobes from 26 female and 24 male patients. Patient age ranged from 1 to 79 years (mean 19 years; standard deviation 16 years). Standardized axial, coronal, and sagittal planes were evaluated and cross-referenced. Eight signs to delineate the superior temporal gyrus, Heschl gyrus (HG), parahippocampal gyrus, rhinal sulcus, collateral sulcus proper, or the occipitotemporal sulcus, or a combination, were evaluated in the sagittal or axial plane. Two neuroradiologists independently evaluated each sign; the sign was considered present only with positive reader agreement. RESULTS: All 8 signs were present in most patients. The most frequent signs were the posterior insular corner to identify HG in the axial plane (100 %), pointed STG to identify STG in the axial plane (98 %), and parahippocampal Y to identify the posterior parahippocampal gyrus in the sagittal plane (98 %). The frequencies were similar between the right and left cerebral hemispheres. CONCLUSIONS: Temporal lobe gyri and sulci can be reliably identified in multiple planes using anatomic signs.


Assuntos
Imageamento por Ressonância Magnética/métodos , Lobo Temporal/diagnóstico por imagem , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Lobo Temporal/anatomia & histologia , Adulto Jovem
10.
J Comput Assist Tomogr ; 39(3): 317-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25783798

RESUMO

BACKGROUND AND PURPOSE: The purpose of this study was to determine if magnetic resonance (MR) susceptibility-weighted imaging (SWI) can increase the conspicuity of corticomedullary veins within the white matter lesions of multiple sclerosis (MS) and, thus, aid in distinguishing plaques from leukoaraiosis. METHODS: We retrospectively reviewed MR examinations in 21 patients with a clinical diagnosis of MS and 18 patients with a clinical diagnosis of dementia. Examinations included fluid-attenuated inversion recovery (FLAIR) and SWI sequences obtained in the axial plane. Lesions greater than 5 mm in diameter on the axial FLAIR sequence were identified as periventricular or subcortical. Three neuroradiologists evaluated SWI images, compared with FLAIR, for a centrally located signal void in each lesion that was scored as present, absent, or indeterminate. RESULTS: In patients with MS, central veins were present in both periventricular lesions (75%, P < 0.001) and subcortical lesions (52%, P < 0.005). In patients with dementia, central veins were seen much less frequently in subcortical lesions (14%, P < 0.001); their association with periventricular lesions was not significant. CONCLUSIONS: Central veins were detected in MS lesions with a significantly greater frequency than that in patients with dementia. Susceptibility-weighted imaging increases the conspicuity of corticomedullary veins and may improve the specificity of MR findings in MS.


Assuntos
Veias Cerebrais/patologia , Transtornos Cerebrovasculares/patologia , Demência/patologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Placa Aterosclerótica/patologia , Substância Branca/patologia , Idoso , Diagnóstico Diferencial , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-38365424

RESUMO

BACKGROUND AND PURPOSE: Cushing disease is typically caused by a pituitary adenoma that frequently is small and challenging to detect on conventional MR imaging. High-field-strength 7T MR imaging can leverage increased SNR and contrast-to-noise ratios compared with lower-field-strength MR imaging to help identify small pituitary lesions. We aimed to describe our institutional experience with 7T MR imaging in patients with Cushing disease and perform a review of the literature. MATERIALS AND METHODS: We performed a retrospective analysis of 7T MR imaging findings in patients with pathology-proved Cushing disease from a single institution, followed by a review of the literature on 7T MR imaging for Cushing disease. RESULTS: Our institutional experience identified Cushing adenomas in 10/13 (76.9%) patients on 7T; however, only 5/13 (38.5%) lesions were discrete. Overall, the imaging protocols used were heterogeneous in terms of contrast dose as well as type of postcontrast T1-weighted sequences (dynamic, 2D versus 3D, and type of 3D sequence). From our institutional data, specific postgadolinium T1-weighted sequences were helpful in identifying a surgical lesion as follows: dynamic contrast-enhanced, 2/7 (28.6%); 2D FSE, 4/8 (50%); 3D sampling perfection with application-optimized contrasts by using different flip angle evolution (SPACE), 5/6 (83.3%); and 3D MPRAGE, 8/11 (72.7%). The literature review identified Cushing adenomas in 31/33 (93.9%) patients on 7T. CONCLUSIONS: 7T MR imaging for pituitary lesion localization in Cushing disease is a new technique with imaging protocols that vary widely. Further comparative research is needed to identify the optimal imaging technique as well as assess the benefit of 7T over lower-field-strength MR imaging.

12.
Magn Reson Imaging ; 109: 189-202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490504

RESUMO

BACKGROUND: Echo planar imaging (EPI) is a fast measurement technique commonly used in magnetic resonance imaging (MRI), but is highly sensitive to measurement non-idealities in reconstruction. Point spread function (PSF)-encoded EPI is a multi-shot strategy which alleviates distortion, but acquisition of encodings suitable for direct distortion-free imaging prolongs scan time. In this work, a model-based iterative reconstruction (MBIR) framework is introduced for direct imaging with PSF-EPI to improve image quality and acceleration potential. METHODS: An MBIR platform was developed for accelerated PSF-EPI. The reconstruction utilizes a subspace representation, is regularized to promote local low-rankedness (LLR), and uses variable splitting for efficient iteration. Comparisons were made against standard reconstructions from prospectively accelerated PSF-EPI data and with retrospective subsampling. Exploring aggressive partial Fourier acceleration of the PSF-encoding dimension, additional comparisons were made against an extension of Homodyne to direct PSF-EPI in numerical experiments. A neuroradiologists' assessment was completed comparing images reconstructed with MBIR from retrospectively truncated data directly against images obtained with standard reconstructions from non-truncated datasets. RESULTS: Image quality results were consistently superior for MBIR relative to standard and Homodyne reconstructions. As the MBIR signal model and reconstruction allow for arbitrary sampling of the PSF space, random sampling of the PSF-encoding dimension was also demonstrated, with quantitative assessments indicating best performance achieved through nonuniform PSF sampling combined with partial Fourier. With retrospective subsampling, MBIR reconstructs high-quality images from sub-minute scan datasets. MBIR was shown to be superior in a neuroradiologists' assessment with respect to three of five performance criteria, with equivalence for the remaining two. CONCLUSIONS: A novel image reconstruction framework is introduced for direct imaging with PSF-EPI, enabling arbitrary PSF space sampling and reconstruction of diagnostic-quality images from highly accelerated PSF-encoded EPI data.


Assuntos
Encéfalo , Imagem Ecoplanar , Estudos Retrospectivos , Imagem Ecoplanar/métodos , Encéfalo/diagnóstico por imagem , Algoritmos , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38663992

RESUMO

BACKGROUND AND PURPOSE: Artificial intelligence (AI) models in radiology are frequently developed and validated using datasets from a single institution and are rarely tested on independent, external datasets, raising questions about their generalizability and applicability in clinical practice. The American Society of Functional Neuroradiology (ASFNR) organized a multi-center AI competition to evaluate the proficiency of developed models in identifying various pathologies on NCCT, assessing age-based normality and estimating medical urgency. MATERIALS AND METHODS: In total, 1201 anonymized, full-head NCCT clinical scans from five institutions were pooled to form the dataset. The dataset encompassed normal studies as well as pathologies including acute ischemic stroke, intracranial hemorrhage, traumatic brain injury, and mass effect (detection of these-task 1). NCCTs were also assessed to determine if findings were consistent with expected brain changes for the patient's age (task 2: age-based normality assessment) and to identify any abnormalities requiring immediate medical attention (task 3: evaluation of findings for urgent intervention). Five neuroradiologists labeled each NCCT, with consensus interpretations serving as the ground truth. The competition was announced online, inviting academic institutions and companies. Independent central analysis assessed each model's performance. Accuracy, sensitivity, specificity, positive and negative predictive values, and receiver operating characteristic (ROC) curves were generated for each AI model, along with the area under the ROC curve (AUROC). RESULTS: 1177 studies were processed by four teams. The median age of patients was 62, with an interquartile range of 33. 19 teams from various academic institutions registered for the competition. Of these, four teams submitted their final results. No commercial entities participated in the competition. For task 1, AUROCs ranged from 0.49 to 0.59. For task 2, two teams completed the task with AUROC values of 0.57 and 0.52. For task 3, teams had little to no agreement with the ground truth. CONCLUSIONS: To assess the performance of AI models in real-world clinical scenarios, we analyzed their performance in the ASFNR AI Competition. The first ASFNR Competition underscored the gap between expectation and reality; the models largely fell short in their assessments. As the integration of AI tools into clinical workflows increases, neuroradiologists must carefully recognize the capabilities, constraints, and consistency of these technologies. Before institutions adopt these algorithms, thorough validation is essential to ensure acceptable levels of performance in clinical settings.ABBREVIATIONS: AI = artificial intelligence; ASFNR = American Society of Functional Neuroradiology; AUROC = area under the receiver operating characteristic curve; DICOM = Digital Imaging and Communications in Medicine; GEE = generalized estimation equation; IQR = interquartile range; NPV = negative predictive value; PPV = positive predictive value; ROC = receiver operating characteristic; TBI = traumatic brain injury.

14.
Med Phys ; 50(2): 694-701, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36301228

RESUMO

BACKGROUND: 7T MRI offers significant benefits to spatial and contrast resolution compared to lower field strengths. This superior image quality can help better delineate targets in stereotactic neurosurgical procedures; however, the potential for increased geometric distortions at 7T has impaired its widespread use for these applications. Image geometric distortions can be due to distortions of B0 arising from tissue magnetic susceptibility effects or inherent field inhomogeneities, and nonlinearity of the magnetic field gradients. PURPOSE: The purpose of this study was to investigate the use of 7T MRI for neurosurgical frameless stereotactic navigation procedures. Image geometric distortions at the skin surface in 7T images were minimized and compared to results from clinical 3T frameless imaging protocols. METHODS: A 3D-printed grid phantom filled with oil was designed to perform a fine calibration of the 7T imaging gradients, and an oil-filled head phantom with internal targets was used to determine ground truth (from computed tomography [CT]) positioning errors. Three volunteers and the head phantom were imaged consecutively at 3T and 7T. Ten skin-adhesive fiducial markers were placed on each subject's exposed skin surface at standard clinical placement locations for frameless procedures. Imaging sequences included MPRAGE (three bandwidths at 7T: 400, 690, and 1020 Hz/pixel, and one at 3T: 400 Hz/pixel), T2 SPACE, and T2 SPACE FLAIR acquisitions. An additional GRE field map was acquired on both scanners using a multi-echo GRE sequence. Custom Matlab code was used to perform additional distortion correction of the images using the unwrapped field maps. Fiducial localization was performed with 3D Slicer, with absolute fiducial positioning errors determined in phantom experiments following rigid registration to the CT images. For human experiments, 3T and 7T images were registered and relative differences in fiducial locations were compared using two-tailed paired t-tests. RESULTS: Phantom measurements at 7T yielded gradient distance scaling errors of 1.1%, 2.2%, and 1.0% along the x-, y-, and z-axes, respectively. These system miscalibrations were traced back to phantom manufacturing deviations in the sphericity of the vendor's gradient calibration phantom. Correction factors along each gradient axis were applied, and afterward, geometric distortions of less than 1 mm were obtained in the 7T MR head phantom images for the 1020 Hz/pixel bandwidth MPRAGE sequence. For the human subjects, four fiducial locations were excluded from the analysis due to patient positioning differences. Differences between 3T and 7T MPRAGE with low/medium/high bandwidth were 2.2 /2.6/2.3 mm, respectively, before the correction, reducing to 1.6/1.3/1.0 mm after the correction (p < 0.001). T2 SPACE and T2 SPACE FLAIR yielded a similar pattern when the correction was applied, decreasing from 2.1 to 0.8 mm, and 2.6 to 1.0 mm, respectively. CONCLUSIONS: 7T MRI can be used to perform frameless presurgical planning with skin-adhesive fiducials. Geometric distortions can be reduced to a clinically relevant level (errors < âˆ¼1 mm) with no significant susceptibility-related distortions, by using high receiver bandwidth, ensuring gradients are properly calibrated, and placing skin fiducials in areas where distortions from patient positioning are minimal.


Assuntos
Imageamento Tridimensional , Tomografia Computadorizada por Raios X , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
15.
Neuroradiol J ; 36(3): 273-288, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36063799

RESUMO

OBJECTIVE: This study investigates a locally low-rank (LLR) denoising algorithm applied to source images from a clinical task-based functional MRI (fMRI) exam before post-processing for improving statistical confidence of task-based activation maps. METHODS: Task-based motor and language fMRI was obtained in eleven healthy volunteers under an IRB approved protocol. LLR denoising was then applied to raw complex-valued image data before fMRI processing. Activation maps generated from conventional non-denoised (control) data were compared with maps derived from LLR-denoised image data. Four board-certified neuroradiologists completed consensus assessment of activation maps; region-specific and aggregate motor and language consensus thresholds were then compared with nonparametric statistical tests. Additional evaluation included retrospective truncation of exam data without and with LLR denoising; a ROI-based analysis tracked t-statistics and temporal SNR (tSNR) as scan durations decreased. A test-retest assessment was performed; retest data were matched with initial test data and compared for one subject. RESULTS: fMRI activation maps generated from LLR-denoised data predominantly exhibited statistically significant (p = 4.88×10-4 to p = 0.042; one p = 0.062) increases in consensus t-statistic thresholds for motor and language activation maps. Following data truncation, LLR data showed task-specific increases in t-statistics and tSNR respectively exceeding 20 and 50% compared to control. LLR denoising enabled truncation of exam durations while preserving cluster volumes at fixed thresholds. Test-retest showed variable activation with LLR data thresholded higher in matching initial test data. CONCLUSION: LLR denoising affords robust increases in t-statistics on fMRI activation maps compared to routine processing, and offers potential for reduced scan duration while preserving map quality.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Idioma , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
16.
Cancers (Basel) ; 15(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37760443

RESUMO

Functional magnetic resonance imaging (fMRI) with blood oxygen level-dependent (BOLD) technique is useful for preoperative mapping of brain functional networks in tumor patients, providing reliable in vivo detection of eloquent cortex to help reduce the risk of postsurgical morbidity. BOLD task-based fMRI (tb-fMRI) is the most often used noninvasive method that can reliably map cortical networks, including those associated with sensorimotor, language, and visual functions. BOLD resting-state fMRI (rs-fMRI) is emerging as a promising ancillary tool for visualization of diverse functional networks. Although fMRI is a powerful tool that can be used as an adjunct for brain tumor surgery planning, it has some constraints that should be taken into consideration for proper clinical interpretation. BOLD fMRI interpretation may be limited by neurovascular uncoupling (NVU) induced by brain tumors. Cerebrovascular reactivity (CVR) mapping obtained using breath-hold methods is an effective method for evaluating NVU potential.

17.
Neuroimage ; 63(3): 1408-20, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22967832

RESUMO

The combination of deep brain stimulation (DBS) and functional MRI (fMRI) is a powerful means of tracing brain circuitry and testing the modulatory effects of electrical stimulation on a neuronal network in vivo. The goal of this study was to trace DBS-induced global neuronal network activation in a large animal model by monitoring the blood oxygenation level-dependent (BOLD) response on fMRI. We conducted DBS in normal anesthetized pigs, targeting the subthalamic nucleus (STN) (n=7) and the entopeduncular nucleus (EN), the non-primate analog of the primate globus pallidus interna (n=4). Using a normalized functional activation map for group analysis and the application of general linear modeling across subjects, we found that both STN and EN/GPi DBS significantly increased BOLD activation in the ipsilateral sensorimotor network (FDR<0.001). In addition, we found differential, target-specific, non-motor network effects. In each group the activated brain areas showed a distinctive correlation pattern forming a group of network connections. Results suggest that the scope of DBS extends beyond an ablation-like effect and that it may have modulatory effects not only on circuits that facilitate motor function but also on those involved in higher cognitive and emotional processing. Taken together, our results show that the swine model for DBS fMRI, which conforms to human implanted DBS electrode configurations and human neuroanatomy, may be a useful platform for translational studies investigating the global neuromodulatory effects of DBS.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Estimulação Encefálica Profunda , Vias Neurais/fisiologia , Animais , Imageamento por Ressonância Magnética , Suínos
18.
Radiology ; 265(1): 222-32, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22891355

RESUMO

PURPOSE: To test the hypothesis that leukoaraiosis alters functional activation during a semantic decision language task. MATERIALS AND METHODS: With institutional review board approval and written informed consent, 18 right-handed, cognitively healthy elderly participants with an aggregate leukoaraiosis lesion volume of more than 25 cm(3) and 18 age-matched control participants with less than 5 cm(3) of leukoaraiosis underwent functional MR imaging to allow comparison of activation during semantic decisions with that during visual perceptual decisions. Brain statistical maps were derived from the general linear model. Spatially normalized group t maps were created from individual contrast images. A cluster extent threshold of 215 voxels was used to correct for multiple comparisons. Intergroup random effects analysis was performed. Language laterality indexes were calculated for each participant. RESULTS: In control participants, semantic decisions activated the bilateral visual cortex, left posteroinferior temporal lobe, left posterior cingulate gyrus, left frontal lobe expressive language regions, and left basal ganglia. Visual perceptual decisions activated the right parietal and posterior temporal lobes. Participants with leukoaraiosis showed reduced activation in all regions associated with semantic decisions; however, activation associated with visual perceptual decisions increased in extent. Intergroup analysis showed significant activation decreases in the left anterior occipital lobe (P=.016), right posterior temporal lobe (P=.048), and right basal ganglia (P=.009) in particpants with leukoariosis. Individual participant laterality indexes showed a strong trend (P=.059) toward greater left lateralization in the leukoaraiosis group. CONCLUSION: Moderate leukoaraiosis is associated with atypical functional activation during semantic decision tasks. Consequently, leukoaraiosis is an important confounding variable in functional MR imaging studies of elderly individuals.


Assuntos
Tomada de Decisões , Idioma , Leucoaraiose/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico/métodos , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Feminino , Movimentos da Cabeça , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Masculino , Estudos Prospectivos , Percepção Visual
19.
Semin Neurol ; 32(1): 15-28, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22422203

RESUMO

White matter myelination is essential to postnatal neurologic maturation and can be accurately evaluated by magnetic resonance imaging (MRI). Accordingly, MRI pulse sequences should be optimized for detection of myelin in young children. T1-weighted images are most useful during the first year of life. These demonstrate myelin-related white matter hyperintensity consequent to increasing cholesterol and galactocerebroside within myelin membranes. T2-weighted images are most useful in later stages of myelination, during which time elaboration of myelin leads to reduction in brain water content with associated T2 hypointensity. Additional information regarding the status of myelination can be obtained from T2-weighted fluid attenuation inversion recovery (FLAIR) and diffusion tensor imaging (DTI) pulse sequences. Clinically useful milestones for assessment of myelination across all these MRI pulse sequences are available as guidelines to image interpretation. Evaluation of myelination status using a combination of T1- and T2-weighted images should be routine in the interpretation of all pediatric brain MRI exams.


Assuntos
Encéfalo/patologia , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Bainha de Mielina/patologia , Fibras Nervosas Mielinizadas/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Humanos , Lactente , Recém-Nascido , Bainha de Mielina/metabolismo , Bainha de Mielina/fisiologia , Fibras Nervosas Mielinizadas/fisiologia
20.
J Neurosurg ; : 1-13, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35334465

RESUMO

OBJECTIVE: Magnetic resonance imaging at 7T offers improved image spatial and contrast resolution for visualization of small brain nuclei targeted in neuromodulation. However, greater image geometric distortion and a lack of compatible instrumentation preclude implementation. In this report, the authors detail the development of a stereotactic image localizer and accompanying imaging sequences designed to mitigate geometric distortion, enabling accurate image registration and surgical planning of basal ganglia nuclei. METHODS: Magnetization-prepared rapid acquisition with gradient echo (MPRAGE), fast gray matter acquisition T1 inversion recovery (FGATIR), T2-weighted, and T2*-weighted sequences were optimized for 7T in 9 human subjects to visualize basal ganglia nuclei, minimize image distortion, and maximize target contrast-to-noise and signal-to-noise ratios. Extracranial spatial distortions were mapped to develop a skull-contoured image localizer embedded with spherical silicone fiducials for improved MR image registration and target guidance. Surgical plan accuracy testing was initially performed in a custom-developed MRI phantom (n = 5 phantom studies) and finally in a human trial. RESULTS: MPRAGE and T2*-weighted sequences had the best measures among global measures of image quality (3.8/4, p < 0.0001; and 3.7/4, p = 0.0002, respectively). Among basal ganglia nuclei, FGATIR outperformed MPRAGE for globus pallidus externus (GPe) visualization (2.67/4 vs 1.78/4, p = 0.008), and FGATIR, T2-weighted imaging, and T2*-weighted imaging outperformed MPRAGE for substantia nigra visualization (1.44/4 vs 2.56/4, p = 0.04; vs 2.56/4, p = 0.04; vs 2.67/4, p = 0.003). Extracranial distortion was lower in the head's midregion compared with the base and apex ( 1.17-1.33 mm; MPRAGE and FGATIR, p < 0.0001; T2-weighted imaging, p > 0.05; and T2*-weighted imaging, p = 0.013). Fiducial placement on the localizer in low distortion areas improved image registration (fiducial registration error, 0.79-1.19 mm; p < 0.0001) and targeting accuracy (target registration error, 0.60-1.09 mm; p = 0.04). Custom surgical software and the refined image localizer enabled successful surgical planning in a human trial (fiducial registration error = 1.0 mm). CONCLUSIONS: A skull-contoured image localizer that accounts for image distortion is necessary to enable high-accuracy 7T imaging-guided targeting for surgical neuromodulation. These results may enable improved clinical efficacy for the treatment of neurological disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA