Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Clin Infect Dis ; 73(9): e3116-e3119, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33103196

RESUMO

We implemented serial coronavirus disease 2019 testing for inpatients with a negative test on admission. The conversion rate (negative to positive) on repeat testing was 1%. We identified patients during their incubation period and hospital-onset cases, rapidly isolated them, and potentially reduced exposures. Serial testing and infectiousness determination were resource intensive.


Assuntos
COVID-19 , Teste para COVID-19 , Hospitais , Humanos , SARS-CoV-2
2.
PLoS Biol ; 12(3): e1001815, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24642609

RESUMO

Candida albicans, the most prevalent human fungal pathogen, is generally diploid. However, 50% of isolates that are resistant to fluconazole (FLC), the most widely used antifungal, are aneuploid and some aneuploidies can confer FLC resistance. To ask if FLC exposure causes or only selects for aneuploidy, we analyzed diploid strains during exposure to FLC using flow cytometry and epifluorescence microscopy. FLC exposure caused a consistent deviation from normal cell cycle regulation: nuclear and spindle cycles initiated prior to bud emergence, leading to "trimeras," three connected cells composed of a mother, daughter, and granddaughter bud. Initially binucleate, trimeras underwent coordinated nuclear division yielding four daughter nuclei, two of which underwent mitotic collapse to form a tetraploid cell with extra spindle components. In subsequent cell cycles, the abnormal number of spindles resulted in unequal DNA segregation and viable aneuploid progeny. The process of aneuploid formation in C. albicans is highly reminiscent of early stages in human tumorigenesis in that aneuploidy arises through a tetraploid intermediate and subsequent unequal DNA segregation driven by multiple spindles coupled with a subsequent selective advantage conferred by at least some aneuploidies during growth under stress. Finally, trimera formation was detected in response to other azole antifungals, in related Candida species, and in an in vivo model for Candida infection, suggesting that aneuploids arise due to azole treatment of several pathogenic yeasts and that this can occur during the infection process.


Assuntos
Aneuploidia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Fluconazol/farmacologia , Tetraploidia , Candida albicans/genética , Crescimento Celular/efeitos dos fármacos , Farmacorresistência Fúngica/genética
3.
Antimicrob Agents Chemother ; 60(12): 7115-7127, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27645246

RESUMO

Only one new class of antifungal drugs has been introduced into clinical practice in the last 30 years, and thus the identification of small molecules with novel mechanisms of action is an important goal of current anti-infective research. Here, we describe the characterization of the spectrum of in vitro activity and in vivo activity of AR-12, a celecoxib derivative which has been tested in a phase I clinical trial as an anticancer agent. AR-12 inhibits fungal acetyl coenzyme A (acetyl-CoA) synthetase in vitro and is fungicidal at concentrations similar to those achieved in human plasma. AR-12 has a broad spectrum of activity, including activity against yeasts (e.g., Candida albicans, non-albicans Candida spp., Cryptococcus neoformans), molds (e.g., Fusarium, Mucor), and dimorphic fungi (Blastomyces, Histoplasma, and Coccidioides) with MICs of 2 to 4 µg/ml. AR-12 is also active against azole- and echinocandin-resistant Candida isolates, and subinhibitory AR-12 concentrations increase the susceptibility of fluconazole- and echinocandin-resistant Candida isolates. Finally, AR-12 also increases the activity of fluconazole in a murine model of cryptococcosis. Taken together, these data indicate that AR-12 represents a promising class of small molecules with broad-spectrum antifungal activity.


Assuntos
Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Fluconazol/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Animais , Candida/efeitos dos fármacos , Candida/genética , Caspofungina , Celecoxib/química , Cryptococcus neoformans/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Farmacorresistência Fúngica/efeitos dos fármacos , Sinergismo Farmacológico , Equinocandinas/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Lipopeptídeos/farmacologia , Masculino , Camundongos Endogâmicos , Testes de Sensibilidade Microbiana , Pneumocystis/efeitos dos fármacos , Pirazóis/química , Saccharomyces cerevisiae/efeitos dos fármacos , Sulfonamidas/química
4.
Eukaryot Cell ; 13(2): 329-40, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24376002

RESUMO

Pyroptosis is an inflammasome-mediated programmed cell death pathway triggered in macrophages by a variety of stimuli, including intracellular bacterial pathogens. Activation of pyroptosis leads to the secretion of interleukin-1ß (IL-1ß) and pore-mediated cell lysis. Although not considered an intracellular pathogen, Candida albicans is able to kill and, thereby, escape from macrophages. Here, we show that C. albicans-infected bone marrow-derived macrophages (BMDM) and murine J774 macrophages undergo pyroptotic cell death that is suppressed by glycine and pharmacologic inhibition of caspase-1. Infection of BMDM harvested from mice lacking components of the inflammasome revealed that pyroptosis was dependent on caspase-1, ASC, and NLRP3 and independent of NLRC4. In contrast to its role during intracellular bacterial infection, pyroptosis does not restrict C. albicans replication. Nonfilamentous Candida spp. did not trigger pyroptosis, while Candida krusei, which forms pseudohyphae in macrophages, triggered much lower levels than did C. albicans. Interestingly, a Saccharomyces cerevisiae strain from the filamentous background Σ1278 also triggered low, but significant, levels of pyroptosis. We have found that deletion of the transcription factor UPC2 decreases pyroptosis but has little effect on filamentation in the macrophage. In addition, a gain-of-function mutant of UPC2 induces higher levels of pyroptosis than does a matched control strain. Taken together, these data are most consistent with a model in which filamentation is necessary but not sufficient to trigger NLRP3 inflammasome-mediated pyroptosis. This is the first example of a fungal pathogen triggering pyroptosis and indicates that C. albicans-mediated macrophage damage is not solely due to hypha-induced physical disruption of cellular integrity.


Assuntos
Candida albicans/patogenicidade , Proteínas de Transporte/metabolismo , Macrófagos/microbiologia , Animais , Candida albicans/genética , Candida albicans/metabolismo , Proteínas de Transporte/genética , Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Morte Celular , Células Cultivadas , Replicação do DNA , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicina/farmacologia , Inflamassomos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transativadores/genética , Transativadores/metabolismo
5.
Eukaryot Cell ; 12(2): 278-87, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23243064

RESUMO

New, more accessible therapies for cryptococcosis represent an unmet clinical need of global importance. We took a repurposing approach to identify previously developed drugs with fungicidal activity toward Cryptococcus neoformans, using a high-throughput screening assay designed to detect drugs that directly kill fungi. From a set of 1,120 off-patent medications and bioactive molecules, we identified 31 drugs/molecules with fungicidal activity, including 15 drugs for which direct antifungal activity had not previously been reported. A significant portion of the drugs are orally bioavailable and cross the blood-brain barrier, features key to the development of a widely applicable anticryptococcal agent. Structural analysis of this set revealed a common chemotype consisting of a hydrophobic moiety linked to a basic amine, features that are common to drugs that cross the blood-brain barrier and access the phagolysosome, two important niches of C. neoformans. Consistent with their fungicidal activity, the set contains eight drugs that are either additive or synergistic in combination with fluconazole. Importantly, we identified two drugs, amiodarone and thioridazine, with activity against intraphagocytic C. neoformans. Finally, the set of drugs is also enriched for molecules that inhibit calmodulin, and we have confirmed that seven drugs directly bind C. neoformans calmodulin, providing a molecular target that may contribute to the mechanism of antifungal activity. Taken together, these studies provide a foundation for the optimization of the antifungal properties of a set of pharmacologically attractive scaffolds for the development of novel anticryptococcal therapies.


Assuntos
Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Cryptococcus neoformans/efeitos dos fármacos , Fluconazol/farmacologia , Adenilato Quinase/metabolismo , Amiodarona/farmacologia , Animais , Calmodulina/antagonistas & inibidores , Calmodulina/metabolismo , Células Cultivadas , Sinergismo Farmacológico , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Testes de Sensibilidade Microbiana , Patentes como Assunto , Fagócitos/microbiologia , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Suloctidil/farmacologia , Tioridazina/farmacologia
6.
mSphere ; 9(3): e0078523, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38376205

RESUMO

Candida albicans is one of the most common causes of superficial and invasive fungal diseases in humans. Its ability to cause disease is closely linked to its ability to undergo a morphological transition from budding yeast to filamentous forms (hyphae and pseudohyphae). The extent to which C. albicans strains isolated from patients undergo filamentation varies significantly. In addition, the filamentation phenotypes of mutants involving transcription factors that positively regulate hyphal morphogenesis can also vary from strain to strain. Here, we characterized the virulence, in vitro and in vivo filamentation, and in vitro and in vivo hypha-associated gene expression profiles for four poorly filamenting C. albicans isolates and their corresponding deletion mutants of the repressor of filamentation NRG1. The two most virulent strains, 57055 and 78048, show robust in vivo filamentation but are predominately yeast phase under in vitro hypha induction; the two low-virulence strains (94015 and 78042) do not undergo filamentation well under either condition. In vitro, deletion of NRG1 increases hyphae formation in the SC5314 derivative SN250, but only pseudohyphae are formed in the clinical isolates. Deletion of NRG1 modestly increased the virulence of 78042, which was accompanied by increased expression of hypha-associated genes without an increase in filamentation. Strikingly, deletion of NRG1 in 78048 reduced filamentation in vivo, expression of candidalysin (ECE1), and virulence without dramatically altering establishment of infection. Thus, the function of the conserved repressor NRG1 in C. albicans shows strain-based heterogeneity during infection.IMPORTANCEClinical isolates of the human fungal pathogen Candida albicans show significant variation in their ability to undergo in vitro filamentation and in the function of well-characterized transcriptional regulators of filamentation. Here, we show that Nrg1, a key repressor of filamentation and filament specific gene expression in standard reference strains, has strain-dependent functions, particularly during infection. Most strikingly, loss of NRG1 function can reduce filamentation, hypha-specific gene expression such as the toxin candidalysin, and virulence in some strains. Our data emphasize that the functions of seemingly fundamental and well-conserved transcriptional regulators such as Nrg1 are contextual with respect to both environment and genetic backgrounds.


Assuntos
Candida albicans , Candidíase , Humanos , Candidíase/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência , Neuregulina-1/genética , Neuregulina-1/metabolismo
7.
mSphere ; 9(4): e0011024, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38501830

RESUMO

Candida albicans is a common human fungal pathogen that is also a commensal of the oral cavity and gastrointestinal tract. C. albicans pathogenesis is linked to its transition from budding yeast to filamentous morphologies including hyphae and pseudohyphae. The centrality of this virulence trait to C. albicans pathobiology has resulted in extensive characterization of a wide range of factors associated with filamentation with a strong focus on transcriptional regulation. The vast majority of these experiments have used in vitro conditions to induce the yeast-to-filament transition. Taking advantage of in vivo approaches to quantitatively characterize both morphology and gene expression during filamentation during mammalian infection, we have investigated the dynamics of these two aspects of filamentation in vivo and compared them to in vitro filament induction with "host-like" tissue culture media supplemented with serum at mammalian body temperature. Although filamentation shares many common features in the two conditions, we have found two significant differences. First, alternative carbon metabolism genes are expressed early during in vitro filamentation and late in vivo, suggesting significant differences in glucose availability. Second, C. albicans begins a hyphae-to-yeast transition after 4-h incubation while we find little evidence of hyphae-to-yeast transition in vivo up to 24 h post-infection. We show that the low rate of in vivo hyphae-to-yeast transition is likely due to the very low expression of PES1, a key driver of lateral yeast in vitro and that heterologous expression of PES1 is sufficient to trigger lateral yeast formation in vivo.IMPORTANCECandida albicans filamentation is correlated with virulence and is an intensively studied aspect of C. albicans biology. The vast majority of studies on C. albicans filamentation are based on in vitro induction of hyphae and pseudohyphae. Here we used an in vivo filamentation assay and in vivo expression profiling to compare the tempo of morphogenesis and gene expression between in vitro and in vivo filamentation. Although the hyphal gene expression profile is induced rapidly in both conditions, it remains stably expressed over a 12-h time course in vivo while it peaks after 4 h in vitro and is reduced. This reduced hyphal gene expression in vitro correlates with reduced hyphae and increased hyphae-to-yeast transition. By contrast, there is little evidence of hyphae-to-yeast transition in vivo.

8.
mSphere ; 9(1): e0050423, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38073033

RESUMO

Cryptococcus is a ubiquitous environmental fungus and frequent colonizer of human lungs. Colonization can lead to diverse outcomes, from clearance to long-term colonization to life-threatening meningoencephalitis. Regardless of the outcome, the process starts with an encounter with phagocytes. Using the zebrafish model of this infection, we have noted that cryptococcal cells first spend time inside macrophages before they become capable of pathogenic replication and dissemination. What "licensing" process takes place during this initial encounter, and how are licensed cryptococcal cells different? To address this, we isolated cryptococcal cells after phagocytosis by cultured macrophages and found these macrophage-experienced cells to be markedly more virulent in both zebrafish and mouse models. Despite producing a thick polysaccharide capsule, they were still subject to phagocytosis by macrophages in the zebrafish. Analysis of antigenic cell wall components in these licensed cells demonstrated that components of mannose and chitin are more available for staining than they are in culture-grown cells or cells with capsule production induced in vitro. Cryptococcus is capable of exiting or transferring between macrophages in vitro, raising the likelihood that this fungus alternates between intracellular and extracellular life during growth in the lungs. Our results raise the possibility that intracellular life has its advantages over time, and phagocytosis-induced alteration in mannose and chitin exposure is one way that makes subsequent rounds of phagocytosis more beneficial to the fungus.IMPORTANCECryptococcosis begins in the lungs and can ultimately travel through the bloodstream to cause devastating infection in the central nervous system. In the zebrafish model, small amounts of cryptococcus inoculated into the bloodstream are initially phagocytosed and become far more capable of dissemination after they exit macrophages. Similarly, survival in the mouse lung produces cryptococcal cell types with enhanced dissemination. In this study, we have evaluated how phagocytosis changes the properties of Cryptococcus during pathogenesis. Macrophage-experienced cells (MECs) become "licensed" for enhanced virulence. They out-disseminate culture-grown cells in the fish and out-compete non-MECs in the mouse lung. Analysis of their cell surface demonstrates that MECs have increased availability of cell wall components mannose and chitin substances involved in provoking phagocytosis. These findings suggest how Cryptococcus might tune its cell surface to induce but survive repeated phagocytosis during early pathogenesis in the lung.


Assuntos
Criptococose , Cryptococcus neoformans , Animais , Camundongos , Humanos , Peixe-Zebra/microbiologia , Criptococose/microbiologia , Virulência , Manose , Macrófagos/microbiologia , Quitina/metabolismo
9.
Infect Control Hosp Epidemiol ; 45(1): 110-113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37528757

RESUMO

Of the 2,668 patients admitted with coronavirus disease 2019 (COVID-19), 4% underwent prolonged isolation for >20 days. Reasons for extended isolation were inconsistent with Centers for Disease Control and Prevention (CDC) guidelines in 25% of these patients and were questionable in 54% due to an ongoing critically ill condition at day 20 without CDC-defined immunocompromised status.


Assuntos
COVID-19 , Humanos , Pacientes Internados , Iowa , SARS-CoV-2 , Centros de Atenção Terciária , Estudos Retrospectivos
10.
Am J Infect Control ; 52(4): 436-442, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37827243

RESUMO

BACKGROUND: Central line-associated bloodstream infections (CLABSIs) increased nationally during the COVID-19 pandemic. We described CLABSIs at our institution during 2019 to 2022. METHODS: This retrospective observational study examined CLABSIs among adult inpatients at an 866-bed teaching hospital in the Midwest. CLABSI incidence was trended over time and compared to monthly COVID-19 admissions. Manual chart review was performed to obtain patient demographics, catheter-associated variables, pathogens, and clinical outcomes. RESULTS: We identified 178 CLABSIs. The CLABSI incidence (cases per 1,000 line days) tripled in October 2020 as COVID-19 admissions increased. CLABSIs in 2020 were more frequently caused by coagulase-negative staphylococci and more frequently occurred in the intensive care units 7+ days after central line insertion. The CLABSI incidence normalized in early 2021 and did not increase during subsequent COVID-19 surges. Throughout 2019 to 2022, about half of the nontunneled central venous catheters involved in CLABSI were placed emergently. One-quarter of CLABSIs involved multiple central lines. Chlorhexidine skin treatment adherence was limited by patient refusal. CONCLUSIONS: The increase in CLABSIs in late 2020 during a surge in COVID-19 admissions was likely related to central line maintenance but has resolved. Characterizing CLABSI cases can provide insight into adherence to guideline-recommended prevention practices and identify areas for improvement at individual institutions.


Assuntos
Bacteriemia , COVID-19 , Infecções Relacionadas a Cateter , Cateterismo Venoso Central , Cateteres Venosos Centrais , Sepse , Adulto , Humanos , Cateterismo Venoso Central/efeitos adversos , Infecções Relacionadas a Cateter/prevenção & controle , Iowa/epidemiologia , Pandemias , Cateteres Venosos Centrais/efeitos adversos , Estudos Retrospectivos , Hospitais de Ensino , Sepse/epidemiologia , COVID-19/epidemiologia , COVID-19/complicações , Bacteriemia/prevenção & controle
11.
mBio ; : e0124924, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949302

RESUMO

Protein kinases are critical regulatory proteins in both prokaryotes and eukaryotes. Accordingly, protein kinases represent a common drug target for a wide range of human diseases. Therefore, understanding protein kinase function in human pathogens such as the fungus Candida albicans is likely to extend our knowledge of its pathobiology and identify new potential therapies. To facilitate the study of C. albicans protein kinases, we constructed a library of 99 non-essential protein kinase homozygous deletion mutants marked with barcodes in the widely used SN genetic background. Here, we describe the construction of this library and the characterization of the competitive fitness of the protein kinase mutants under 11 different growth and stress conditions. We also screened the library for protein kinase mutants with altered filamentation and biofilm formation, two critical virulence traits of C. albicans. An extensive network of protein kinases governs these virulence traits in a manner highly dependent on the specific environmental conditions. Studies on specific protein kinases revealed that (i) the cell wall integrity MAPK pathway plays a condition-dependent role in filament initiation and elongation; (ii) the hyper-osmolar glycerol MAPK pathway is required for both filamentation and biofilm formation, particularly in the setting of in vivo catheter infection; and (iii) Sok1 is dispensable for filamentation in hypoxic environments at the basal level of a biofilm but is required for filamentation in normoxia. In addition to providing a new genetic resource for the community, these observations emphasize the environmentally contingent function of C. albicans protein kinases.IMPORTANCECandida albicans is one of the most common causes of fungal disease in humans for which new therapies are needed. Protein kinases are key regulatory proteins and are increasingly targeted by drugs for the treatment of a wide range of diseases. Understanding protein kinase function in C. albicans pathogenesis may facilitate the development of new antifungal drugs. Here, we describe a new library of 99 protein kinase deletion mutants to facilitate the study of protein kinases. Furthermore, we show that the function of protein kinases in two virulence-related processes, filamentation and biofilm formation, is dependent on the specific environmental conditions.

12.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168187

RESUMO

Candida albicans is one of the most common causes of superficial and invasive fungal disease in humans. Its ability to cause disease has been closely linked to its ability to undergo a morphological transition from budding yeast to filamentous forms (hyphae and pseudohyphae). The ability of C. albicans strains isolated from patients to undergo filamentation varies significantly. In addition, the filamentation phenotypes of mutants involving transcription factors that positively regulate hyphal morphogenesis can also vary from strain to strain. Here, we characterized the virulence, in vitro and in vivo filamentation, and in vitro and in vivo hypha-associated gene expression profiles of four poorly filamenting C. albicans isolates and their corresponding deletion mutants of the repressor of filamentation NRG1. The two most virulent strains, 57055 and 78048, show robust in vivo filamentation while remaining predominately yeast phase exposed to RPMI+10% bovine calf serum at 37°C; the two low virulence strains (94015 and 78042) do not filament well under either condition. Deletion of NRG1 increases hyphae formation in the SC5314 derivative SN250 but only pseudohyphae are formed in the clinical isolates in vivo. Deletion of NRG1 modestly increased the virulence of 78042 which was accompanied by increased expression of hyphae-associated genes without an increase in filamentation. Strikingly, deletion of NRG1 in 78048 reduced filamentation, expression of candidalysin (ECE1) and virulence in vivo without dramatically altering establishment of infection. Thus, the function of NRG1 varies significantly within this set of C. albicans isolates and can actually suppress filamentation in vivo.

13.
Elife ; 122023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847358

RESUMO

Candida albicans is one of the most common human fungal pathogens. C. albicans pathogenesis is tightly linked to its ability to under a morphogenetic transition from typically budding yeast to filamentous forms of hyphae and pseudohyphae. Filamentous morphogenesis is the most intensively studied C. albicans virulence traits; however, nearly all of these studies have been based on in vitro induction of filamentation. Using an intravital imaging assay of filamentation during mammalian (mouse) infection, we have screened a library of transcription factor mutants to identify those that modulate both the initiation and maintenance of filamentation in vivo. We coupled this initial screen with genetic interaction analysis and in vivo transcription profiling to characterize the transcription factor network governing filamentation in infected mammalian tissue. Three core positive (Efg1, Brg1, and Rob1) and two core negative regulators (Nrg1 and Tup1) of filament initiation were identified. No previous systematic analysis of genes affecting the elongation step has been reported and we found that large set of transcription factors affect filament elongation in vivo including four (Hms1, Lys14, War1, Dal81) with no effect on in vitro elongation. We also show that the gene targets of initiation and elongation regulators are distinct. Genetic interaction analysis of the core positive and negative regulators revealed that the master regulator Efg1 primarily functions to mediate relief of Nrg1 repression and is dispensable for expression of hypha-associated genes in vitro and in vivo. Thus, our analysis not only provide the first characterization of the transcriptional network governing C. albicans filamentation in vivo but also revealed a fundamentally new mode of function for Efg1, one of the most widely studied C. albicans transcription factors.


Assuntos
Candida albicans , Proteínas Fúngicas , Animais , Camundongos , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Hifas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Infect Control Hosp Epidemiol ; 44(8): 1351-1354, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35652600

RESUMO

We describe COVID-19 cases among nonphysician healthcare personnel (HCP) by work location. The proportion of HCP with coronavirus disease 2019 (COVID-19) was highest in the emergency department and lowest among those working remotely. COVID-19 and non-COVID-19 units had similar proportions of HCP with COVID-19 (13%). Cases decreased across all work locations following COVID-19 vaccination.


Assuntos
COVID-19 , Humanos , Iowa/epidemiologia , Vacinas contra COVID-19 , Pessoal de Saúde , Local de Trabalho , Atenção à Saúde
15.
bioRxiv ; 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37398495

RESUMO

Candida albicans is a diploid human fungal pathogen that displays significant genomic and phenotypic heterogeneity over a range of virulence traits and in the context of a variety of environmental niches. Here, we show that the effects of Rob1 on biofilm and filamentation virulence traits is dependent on both the specific environmental condition and the clinical strain of C. albicans . The C. albicans reference strain SC5314 is a ROB1 heterozygote with two alleles that differ by a single nucleotide polymorphism at position 946 resulting in a serine or proline containing isoform. An analysis of 224 sequenced C. albicans genomes indicates that SC5314 is the only ROB1 heterozygote documented to date and that the dominant allele contains a proline at position 946. Remarkably, the ROB1 alleles are functionally distinct and the rare ROB1 946S allele supports increased filamentation in vitro and increased biofilm formation in vitro and in vivo, suggesting it is a phenotypic gain-of-function allele. SC5314 is amongst the most highly filamentous and invasive strains characterized to date. Introduction of the ROB1 946S allele into a poorly filamenting clinical isolate increases filamentation and conversion of an SC5314 laboratory strain to a ROB1 946S homozygote increases in vitro filamentation and biofilm formation. In a mouse model of oropharyngeal infection, the predominant ROB1 946P allele establishes a commensal state while the ROB1 946S phenocopies the parent strain and invades into the mucosae. These observations provide an explanation for the distinct phenotypes of SC5314 and highlight the role of heterozygosity as a driver of C. albicans phenotypic heterogeneity. Importance: Candida albicans is a commensal fungus that colonizes human oral cavity and gastrointestinal tracts but also causes mucosal as well as invasive disease. The expression of virulence traits in C. albicans clinical isolates is heterogenous and the genetic basis of this heterogeneity is of high interest. The C. albicans reference strain SC5314 is highly invasive and expresses robust filamentation and biofilm formation relative to many other clinical isolates. Here, we show that SC5314 derivatives are heterozygous for the transcription factor Rob1 and contain an allele with a rare gain-of-function SNP that drives filamentation, biofilm formation, and virulence in a model of oropharyngeal candidiasis. These finding explain, in part, the outlier phenotype of the reference strain and highlight the role of heterozygosity plays in the strain-to-strain variation of diploid fungal pathogens.

16.
mBio ; 14(5): e0152123, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37737633

RESUMO

IMPORTANCE: Candida albicans is a commensal fungus that colonizes the human oral cavity and gastrointestinal tract but also causes mucosal as well as invasive disease. The expression of virulence traits in C. albicans clinical isolates is heterogeneous and the genetic basis of this heterogeneity is of high interest. The C. albicans reference strain SC5314 is highly invasive and expresses robust filamentation and biofilm formation relative to many other clinical isolates. Here, we show that SC5314 derivatives are heterozygous for the transcription factor Rob1 and contain an allele with a rare gain-of-function SNP that drives filamentation, biofilm formation, and virulence in a model of oropharyngeal candidiasis. These findings explain, in part, the outlier phenotype of the reference strain and highlight the role heterozygosity plays in the strain-to-strain variation of diploid fungal pathogens.


Assuntos
Candida albicans , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Alelos , Simbiose , Biofilmes , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/metabolismo
17.
Infect Immun ; 80(7): 2265-75, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22508863

RESUMO

The ability to cope with endogenous or host-generated reactive oxygen species is considered a key virulence attribute of the opportunistic pathogen Enterococcus faecalis, a leading cause of hospital-acquired infections. In this study, we used in silico and mutational analyses to identify and characterize the role of the Spx global regulator in oxidative stress tolerance and virulence in E. faecalis. While the Δspx strain grew as well as the wild-type strain under anaerobic conditions, the mutant strain exhibited impaired growth under aerobic conditions and was highly sensitive to oxidative stress agents. The spx mutant strain was also sensitive to a variety of other stressful conditions, including antibiotic stress and killing by the mouse-derived macrophage cell line J774. Using a murine model of foreign body-associated peritonitis, we demonstrated that the ability of the Δspx strain to colonize the peritoneum and disseminate in the bloodstream was significantly reduced compared to that of the parent strain. Transcriptional analysis revealed that a large number of known oxidative stress genes are under positive control by Spx. Collectively, our results show that Spx is a major stress gene regulator and is implicated in the pathophysiology of E. faecalis. The relationship of Spx to other oxidative stress regulators is also discussed.


Assuntos
Enterococcus faecalis/fisiologia , Enterococcus faecalis/patogenicidade , Regulação Bacteriana da Expressão Gênica , Viabilidade Microbiana , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Aerobiose , Anaerobiose , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Corpos Estranhos/complicações , Deleção de Genes , Perfilação da Expressão Gênica , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Oxidantes/metabolismo , Oxidantes/toxicidade , Estresse Oxidativo , Peritonite/microbiologia , Peritonite/patologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/toxicidade , Fatores de Transcrição/genética , Virulência
18.
J Vis Exp ; (188)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36314794

RESUMO

Candida albicans is an important human pathogen. Its ability to switch between morphologic forms is central to its pathogenesis; these morphologic changes are regulated by a complex signaling network controlled in response to environmental stimuli. These regulatory components have been highly studied, but almost all studies use a variety of in vitro stimuli to trigger filamentation. To determine how morphogenesis is regulated during the pathogenesis process, we developed an in vivo microscopy system to obtain high spatial resolution images of organisms undergoing hyphal formation within the mammalian host. The protocol presented here describes the use of this system to screen small collections of C. albicans mutant strains, allowing us to identify key regulators of morphogenesis as it occurs at the site of infection. Representative results are presented, demonstrating that some regulators of morphogenesis, such as the transcriptional regulator Efg1, have consistent phenotypes in vitro and in vivo, whereas other regulators, such as adenyl cyclase (Cyr1), have significantly different phenotypes in vivo compared to in vitro.


Assuntos
Candida albicans , Proteínas Fúngicas , Animais , Humanos , Candida albicans/genética , Proteínas Fúngicas/genética , Hifas/genética , Morfogênese/genética , Fenótipo , Mamíferos
19.
mBio ; 13(3): e0085122, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35475642

RESUMO

Candida albicans is one of the most prevalent human fungal pathogens. Its ability to transition between budding yeast and filamentous morphological forms (pseudohyphae and hyphae) is tightly associated with its pathogenesis. Based on in vitro studies, the cAMP-protein kinase A (PKA) pathway is a key regulator of C. albicans morphogenesis. Using an intravital imaging approach, we investigated the role of the cAMP-PKA pathway during infection. Consistent with their roles in vitro, the downstream effectors of the cAMP-PKA pathway Efg1 and Nrg1 function, respectively, as an activator and a repressor of in vivo filamentation. Surprisingly, strains lacking the adenylyl cyclase, CYR1, showed only slightly reduced filamentation in vivo despite being completely unable to filament in RPMI + 10% serum at 37°C. Consistent with these findings, deletion of the catalytic subunits of PKA (Tpk1 and Tpk2), either singly or in combination, generated strains that also filamented in vivo but not in vitro. In vivo transcription profiling of C. albicans isolated from both ear and kidney tissue showed that the expression of a set of 184 environmentally responsive genes correlated well with in vitro filamentation (R2, 0.62 to 0.68) genes. This concordance suggests that the in vivo and in vitro transcriptional responses are similar but that the upstream regulatory mechanisms are distinct. As such, these data emphatically emphasize that C. albicans filamentation is a complex phenotype that occurs in different environments through an intricate network of distinct regulatory mechanisms. IMPORTANCE The fungus Candida albicans causes a wide range of disease in humans from common diaper rash to life-threatening infections in patients with compromised immune systems. As such, the mechanisms for its ability to cause disease are of wide interest. An intensely studied virulence property of C. albicans is its ability to switch from a round yeast form to filament-like forms (hyphae and pseudohyphae). Surprisingly, we have found that a key signaling pathway that regulates this transition in vitro, the protein kinase A pathway, is not required for filamentation during infection of the host. Our work not only demonstrates that the regulation of filamentation depends upon the specific environment C. albicans inhabits but also underscores the importance of studying these mechanisms during infection.


Assuntos
Candida albicans , Proteínas Quinases Dependentes de AMP Cíclico , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas/genética
20.
mSphere ; 7(3): e0016322, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35506343

RESUMO

There is an urgent need for new antifungals to treat cryptococcal meningoencephalitis, a leading cause of mortality in people living with HIV/AIDS. An important aspect of antifungal drug development is the validation of targets to determine whether they are required for the survival of the organism in animal models of disease. In Cryptococcus neoformans, a copper-regulated promoter (pCTR4-2) has been used previously to modulate gene expression in vivo. The premise for these experiments is that copper concentrations differ depending on the host niche. Here, we directly test this premise and confirm that the expression of CTR4, the promoter used to regulate gene expression, is much lower in the mouse lung compared to the brain. To further explore this approach, we applied it to the gene encoding 1,3-ß-glucan synthase, FKS1. In vitro, reduced expression of FKS1 has little effect on growth but does activate the cell wall integrity stress response and increase susceptibility to caspofungin, a direct inhibitor of Fks1. These data suggest that compensatory pathways that reduce C. neoformans resistance do so through posttranscriptional effects. In vivo, however, a less pronounced reduction in FKS1 expression leads to a much more significant reduction in lung fungal burden (~1 log10 CFU), indicating that the compensatory responses to a reduction in FKS1 expression are not as effective in vivo as they are in vitro. In summary, use of copper-regulated expression of putative drug targets in vitro and in vivo can provide insights into the biological consequences of reduced activity of the target during infection. IMPORTANCE Conditional expression systems are widely used to genetically validate antifungal drug targets in mouse models of infection. Copper-regulated expression using the promoter of the CTR4 gene has been sporadically used for this purpose in C. neoformans. Here, we show that CTR4 expression is low in the lung and high in the brain, establishing the basic premise behind this approach. We applied the approach to the study of FKS1, the gene encoding the target of the echinocandin class of 1,3-ß-glucan synthase inhibitors. Our in vitro and in vivo studies indicate that C. neoformans tolerates extremely low levels of FKS1 expression. This observation provides a potential explanation for the poor activity of 1,3-ß-glucan synthase inhibitors toward C. neoformans.


Assuntos
Criptococose , Cryptococcus neoformans , Animais , Antifúngicos/metabolismo , Cobre/metabolismo , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Modelos Animais de Doenças , Proteínas Fúngicas/metabolismo , Expressão Gênica , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA