Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0303938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843147

RESUMO

Oxford Nanopore Technologies (ONT) sequencing is a promising technology. We assessed the performance of the new ONT R10 flowcells and V14 rapid sequencing chemistry for Mtb whole genome sequencing of Mycobacterium tuberculosis (Mtb) DNA extracted from clinical primary liquid cultures (CPLCs). Using the recommended protocols for MinION Mk1C, R10.4.1 MinION flowcells, and the ONT Rapid Sequencing Kit V14 on six CPLC samples, we obtained a pooled library yield of 10.9 ng/µl, generated 1.94 Gb of sequenced bases and 214k reads after 48h in a first sequencing run. Only half (49%) of all generated reads met the Phred Quality score threshold (>8). To assess if the low data output and sequence quality were due to impurities present in DNA extracted directly from CPLCs, we added a pre-library preparation bead-clean-up step and included purified DNA obtained from an Mtb subculture as a control sample in a second sequencing run. The library yield for DNA extracted from four CPLCs and one Mtb subculture (control) was similar (10.0 ng/µl), 2.38 Gb of bases and 822k reads were produced. The quality was slightly better with 66% of the produced reads having a Phred Quality >8. A third run of DNA from six CPLCs with bead clean-up pre-processing produced a low library yield (±1 Gb of bases, 166k reads) of low quality (51% of reads with a Phred Quality score >8). A median depth of coverage above 10× was only achieved for five of 17 (29%) sequenced libraries. Compared to Illumina WGS of the same samples, accurate lineage predictions and full drug resistance profiles from the generated ONT data could not be determined by TBProfiler. Further optimization of the V14 ONT rapid sequencing chemistry and library preparation protocol is needed for clinical Mtb WGS applications.


Assuntos
DNA Bacteriano , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Humanos , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Nanoporos , Sequenciamento por Nanoporos/métodos , Genoma Bacteriano , Sequenciamento Completo do Genoma/métodos , Tuberculose/microbiologia , Tuberculose/diagnóstico , Biblioteca Gênica
2.
Microbiol Spectr ; 11(4): e0111423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358439

RESUMO

Mycobacterium tuberculosis whole-genome sequencing (WGS) is a powerful tool as it can provide data on population diversity, drug resistance, disease transmission, and mixed infections. Successful WGS is still reliant on high concentrations of DNA obtained through M. tuberculosis culture. Microfluidics technology plays a valuable role in single-cell research but has not yet been assessed as a bacterial enrichment strategy for culture-free WGS of M. tuberculosis. In a proof-of-principle study, we evaluated the use of Capture-XT, a microfluidic lab-on-chip cleanup and pathogen concentration platform to enrich M. tuberculosis bacilli from clinical sputum specimens for downstream DNA extraction and WGS. Three of the four (75%) samples processed by the microfluidics application passed the library preparation quality control, compared to only one of the four (25%) samples not enriched by the microfluidics M. tuberculosis capture application. WGS data were of sufficient quality, with mapping depth of ≥25× and 9 to 27% of reads mapping to the reference genome. These results suggest that microfluidics-based M. tuberculosis cell capture might be a promising method for M. tuberculosis enrichment in clinical sputum samples, which could facilitate culture-free M. tuberculosis WGS. IMPORTANCE Diagnosis of tuberculosis is effective using molecular methods; however, a comprehensive characterization of the resistance profile of Mycobacterium tuberculosis often requires culturing and phenotypic drug susceptibility testing or culturing followed by whole-genome sequencing (WGS). The phenotypic route can take anywhere from 1 to >3 months to result, by which point the patient may have acquired additional drug resistance. The WGS route is a very attractive option; however, culturing is the rate-limiting step. In this original article, we provide proof-of-principle evidence that microfluidics-based cell capture can be used on high-bacillary-load clinical samples for culture-free WGS.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Microfluídica , Testes de Sensibilidade Microbiana , Tuberculose/microbiologia , Sequenciamento Completo do Genoma , Antituberculosos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA