Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372941

RESUMO

Plants have evolved diverse strategies to accommodate saline environments. More insights into the knowledge of salt stress regulatory pathways will benefit crop breeding. RADICAL-INDUCED CELL DEATH 1 (RCD1) was previously identified as an essential player in salt stress response. However, the underlying mechanism remains elusive. Here, we unraveled that Arabidopsis NAC domain-containing protein 17 (ANAC017) acts downstream of RCD1 in salt stress response, and its ER-to-nucleus transport is triggered by high salinity. Genetic and biochemical evidence showed that RCD1 interacts with transmembrane motif-truncated ANAC017 in the nucleus and represses its transcriptional activity. Transcriptome analysis revealed that genes associated with oxidation reduction process and response to salt stress are similarly dysregulated in loss-of-function rcd1 and gain-of-function anac017-2 mutants. In addition, we found that ANAC017 plays a negative role in salt stress response by impairing the superoxide dismutase (SOD) enzyme activity. Taken together, our study uncovered that RCD1 promotes salt stress response and maintains ROS homeostasis by inhibiting ANAC017 activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estresse Fisiológico/genética , Melhoramento Vegetal , Tolerância ao Sal/genética , Morte Celular , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
2.
Angew Chem Int Ed Engl ; 58(43): 15362-15366, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31441563

RESUMO

The electrochemical nitrogen reduction reaction (NRR) offers an energy-saving and environmentally friendly approach to produce ammonia under ambient conditions. However, traditional catalysts have extremely poor NRR performances because of their low activity and the competitive hydrogen evolution reaction. The high catalytic activity of nanoporous gold (NPG) and the hydrophobicity and molecular concentrating effect of the zeolitic imidazolate framework-8 (ZIF-8) were incorporated in the NPG@ZIF-8 nanocomposite so that the ZIF-8 shell could weaken hydrogen evolution and retard reactant diffusion. A highest Faradaic efficiency of 44 % and an excellent rate of ammonia production of (28.7±0.9) µg h-1 cm-2 were achieved, which are superior to traditional gold nanoparticles and NPG. Moreover, the composite catalyst shows high electrochemical stability and selectivity (98 %). The superior NRR performance makes NPG@ZIF-8 one of the most promising water-based NRR electrocatalysts for ammonia production.

3.
Adv Sci (Weinh) ; 10(15): e2206933, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36995064

RESUMO

Electrocatalytic nitrogen reduction reaction (NRR) represents a promising sustainable approach for NH3 synthesis. However, the poor NRR performance of electrocatalysts is a great challenge at this stage, mainly owing to their low activity and the competitive hydrogen evolution reaction (HER). Herein, 2D ferric covalent organic framework/MXene (COF-Fe/MXene) nanosheets with controllable hydrophobic behaviors are successfully prepared via a multiple-in-one synthetic strategy. The boosting hydrophobicity of COF-Fe/MXene can effectively repel water molecules to inhibit the HER for enhanced NRR performances. By virtue of the ultrathin nanostructure, well-defined single Fe sites, nitrogen enrichment effect, and high hydrophobicity, the 1H,1H,2H,2H-perfluorodecanethiol modified COF-Fe/MXene hybrid shows a NH3 yield of 41.8 µg h-1 mgcat. -1 and a Faradaic efficiency of 43.1% at -0.5 V versus RHE in a 0.1 m Na2 SO4 water solution, which are vastly superior to the known Fe-based catalysts and even to the noble metal catalysts. This work provides a universal strategy to design and synthesis of non-precious metal electrocatalysts for high-efficiency N2 reduction to NH3 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA