Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(49): 10506-10516, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38038707

RESUMO

In this paper, we report the first attempt to quantify impact sensitivity using the second-order incremental approach based on the structural features of explosives. It has been found that impact height (h50) can be expressed via a multiplicative incremental exponential form, in which the exponents are characteristic coefficients of structural increments multiplied by their numbers in the molecule. The method was developed on a large array of experimental data (450 molecules and salts) of different energetic materials, namely, nitro compounds, peroxides, nitrogen-rich salts, heterocycles, etc., while testing of the model was performed for 170 compounds. The results demonstrate a noticeable correlation with the experimental h50 values. Thus, the corresponding R2 and RMSE for the training and test sets are 0.56 (12.5 J) and 0.63 (18.8 J), respectively. In this work, we use 53 individual structural increments, but their number can be extended, and the corresponding coefficients can be refined; this allows for increasing the prediction accuracy on-the-fly. The calculation algorithm is discussed, and the corresponding examples are presented. The performed machine-based regression analysis using genetic function approximation, multiple linear regression, and artificial neural network has proven the reasonability and informativity of the proposed incremental theory. Thus, the developed approach significantly extends our understanding of the impact sensitivity phenomenon and translates it into the category of one that can be calculated by a pocket calculator.

2.
Molecules ; 28(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959780

RESUMO

In the ZINC20 database, with the aid of maximum substructure searches, common substructures were obtained from molecules with high-strain-energy and combustion heat values, and further provided domain knowledge on how to design high-energy-density hydrocarbon (HEDH) fuels. Notably, quadricyclane and syntin could be topologically assembled through these substructures, and the corresponding assembled schemes guided the design of 20 fuel molecules (ZD-1 to ZD-20). The fuel properties of the molecules were evaluated by using group-contribution methods and density functional theory (DFT) calculations, where ZD-6 stood out due to the high volumetric net heat of combustion, high specific impulse, low melting point, and acceptable flash point. Based on the neural network model for evaluating the synthetic complexity (SCScore), the estimated value of ZD-6 was close to that of syntin, indicating that the synthetic complexity of ZD-6 was comparable to that of syntin. This work not only provides ZD-6 as a potential HEDH fuel, but also illustrates the superiority of learning design strategies from the data in increasing the understanding of structure and performance relationships and accelerating the development of novel HEDH fuels.

3.
ACS Appl Mater Interfaces ; 16(36): 47429-47442, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39214567

RESUMO

Layered energetic materials (LEMs) can effectively balance energy and mechanical sensitivity, making them a current research focus in the field of energetic materials. However, the influence of the layered stacking pattern on impact sensitivity is still unclear, leading to the lack of advanced design strategies for high-energy low-sensitivity LEMs. Herein, we first utilize novel indicators such as maximum plane separation and hydrogen bond dimension to perform high-throughput screening on over 106 candidate structures, resulting in 17 target crystals. A systematic analysis was then conducted on the relationships between the bond dissociation energy (BDE) of the weakest energy-storing bond at the molecular level, the intralayer hydrogen bond energy (HBE), and the sliding energy barrier (SEB) at the crystal level with impact sensitivity. The findings suggest that a material can have low sensitivity only if at least two of the three properties perform well, and the interlayer sliding resistance can be reduced by enhancing the intermolecular hydrogen bond interactions, which reasonably explains the experimental phenomena. More importantly, we developed a prediction model for the impact sensitivity of LEMs with a coefficient of determination of 0.88. Additionally, factors affecting HBE and SEB were identified, and a linear model was established based on molecular-level feature variables. Finally, a new strategy for designing high-energy low-sensitivity LEMs was proposed, namely, empowerment at the molecular scale and desensitization at the crystal scale. This study integrates high-throughput screening, multilevel structure-property relationship analysis, and mathematical model construction, offering new perspectives for the development of novel high-energy and low-sensitivity energetic materials.

4.
J Colloid Interface Sci ; 630(Pt B): 394-402, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36332432

RESUMO

Due to structural tunability, high surface area, abundant pore structures, and abundant active sites, covalent heptazine frameworks (CHFs) constructed from heptazine and other molecular blocks are especially prominent. Here, we proposed a reaction-dependent strategy for designing two dimensional CHFs including high-throughput precursors screening, structure generation, and performance evaluation. Assuming that oxamide-like precursors can undergo the same thermal polymerization reaction as producing C6N7, seven precursors were screened from more than 109 molecules in the ZINC20 database in terms of molecular weight, number of substructures, shape index, and symmetry. Furthermore, CHF-L1 to CHF-L7 were constructed from urea and the seven precursors according to the topologically assembling scheme in thermal polymerization. The designed CHFs had band gaps ranging from 1.89 to 3.10 eV. Among them, CHF-L3 assembled structurally by urea and 1,2,4,5-tetrazine-3,6-dicarboxamide with the smallest bandgap and an oxidative potential bias of 1.38 V for oxygen evolution reaction was screened as the candidate with high oxidative ability. The negative formation energy based on the synthesis route indicated the synthetic feasibility of CHF-L3, and negative cohesive energy as well as the stable structure under ab initio molecular dynamics simulations confirmed the stability of CHF-L3. The present work is expected to provide a powerful design strategy for two-dimensional CHFs design and is broadly applicable to various computational covalent organic framework design systems and experimental studies.


Assuntos
Simulação de Dinâmica Molecular , Ureia , Oxirredução , Polimerização
5.
J Phys Chem Lett ; 12(47): 11591-11597, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34812642

RESUMO

Domain-related knowledge promoted high-throughput cage scaffold screening from the ZINC15 database containing over 130 000 scaffolds and cooperated with combinatorial design to alleviate the lack of cage energetic materials. A dozen candidates were discovered that show excellent energy and safety performance, confirming the effectiveness of our strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA