Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 359: 120987, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692029

RESUMO

The removal of organic pollutants in water environments and the resource utilization of solid waste are two pressing issues around the world. Facing the increasing pollution induced by discharge of mining effluents containing sodium isopropyl xanthate (SIPX), in this work, municipal solid waste incineration fly ash (MSWI FA) was pretreated by hydrothermal method to produce stabilized FA, which was then innovatively used as support for the construction of FA/TiO2/BiOCl nanocomposite (FTB) with promoted photocatalytic activity under visible light and natural sunlight. When the content of FA was 20 wt% and the mass ratio of TiO2 to BiOCl was 4:6, a remarkable performance for the optimal FTB (20-FTB-2) was achieved. Characterizations demonstrated that TiO2 and BiOCl uniformly dispersed on FA contributing to high surface area and broad light adsorption of FTB, which exhibits excellent adsorption capacity and light response ability. Build in electric field formed in the interface of TiO2/BiOCl heterojunction revealed by density functional theory calculations accelerated the separation of photoinduced e- and h+, leading to high efficiency for SIPX degradation. The synergetic effect combined with adsorption and photocatalytic degradation endowed 20-FTB-2 superior SIPX removal efficiency over 99% within 30 min under visible light and natural sunlight irradiation. The photocatalytic degradation pathways of SIPX were determined through theoretical calculations and characterizations, and the toxic byproduct CS2 was effectively eliminated through oxidation of •O2-. For 20-FTB-2, reusability of photocatalyst was showed by cycle tests, also the concentrations of main heavy metals (Pb, Zn, Cu, Cr, and Cd) in the liquid phases released during photocatalyst preparation process (< 1 mg/L) and photodegradation process (< 8.5 µg/L) proved the satisfactory stability with low toxicity. This work proposed a novel strategy to develop efficient and stable support-based photocatalysts by utilizing MSWI FA and realize its resource utilization.


Assuntos
Cinza de Carvão , Nanocompostos , Titânio , Nanocompostos/química , Titânio/química , Cinza de Carvão/química , Catálise , Adsorção , Resíduos Sólidos , Poluentes Químicos da Água/química
2.
Sci Total Environ ; 918: 170467, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38290685

RESUMO

The emission of carcinogenic, teratogenic, and mutagenic polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste incineration (MSWI) of fly ash (FA) has attracted significant attention. Hydrothermal treatment (HT) has emerged as a practical approach for degrading PAHs during MSWI of FA by utilizing magnetite (Fe3O4) as a catalyst and hydrogen peroxide (H2O2) as an oxidizing agent. In this study, as an alternative to traditional hydroxyapatite (HAP), eggshell-derived magnetic hydroxyapatite (MHAP) was synthesized and applied in the hydrothermal catalytic degradation of PAHs in MSWI FA in an H2O2 system for the first time. The degradation efficiency of the PAHs is influenced not only by H2O2 but also by the choice of hydroxyapatite. Adding HAP or MHAP during hydrothermal treatment with H2O2 substantially reduced the overall PAH concentration and toxicity equivalent quantity (TEQ), superior to that without H2O2. MHAP demonstrated superior catalytic activity compared to HAP in the presence of H2O2 in the hydrothermal system. The hydrothermal detoxification of the PAHs increased with increasing MHAP dosage. By employing 0.5 mol/L H2O2 as the oxidant and 15 wt% MHAP as the catalyst, a total PAH degradation rate of 88.9 % was achieved, with a remarkable TEQ degradation rate of 98.3 %. Notably, the level of 4-6-ring PAHs, particularly benzo(a) pyrene (BaP) and dibenz(a,h)anthracene (DahA), with a TEQ of 1.0, was significantly reduced (by 69.4 % and 46.0 %, respectively). MHAP remained stable during the hydrothermal catalytic process, whereas H2O2 was effectively activated by MHAP and decomposed to produce strongly oxidizing hydroxyl (•OH) under hydrothermal conditions. •OH produced from the decomposition of H2O2 and metals on the surface of MHAP act as catalytically active centers, efficiently converting high-ring PAHs to low-ring PAHs. These findings provide valuable insights and a technological foundation for PAH detoxification in MSWI FA via hydrothermal catalytic oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA