Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(33): 30590-30597, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636915

RESUMO

Sand production from gas wells has a significant impact on the production of gas wells. This review aims to reveal the reasons for fracturing sand backflow in Sulige Gas Field gas wells and provide targeted preventive measures to prevent fracturing sand backflow. The critical parameters of sand production in gas wells were calculated through theoretical models, and the reasons and mechanisms of fracturing sand backflow in Sulige gas wells were analyzed from three major aspects: production factors, reservoir factors, and process factors. The Analytic Hierarchy Process was used to analyze the degree of influence of the sand production factors in gas wells. Research has shown that the high production rate of gas wells, unreasonable design of fracturing parameters, and insufficient drainage of fracturing fluid are the main reasons for sand discharge in the Sulige gas well formation. Controlling the production of gas wells between the critical flow rate of fracturing proppant reflux and the critical sand carrying flow rate of the wellbore, designing fracturing construction parameters reasonably, prolonging the gas testing time, and allowing the fracturing fluid to fully reverse flow can effectively prevent sand production from the gas well.

2.
Biotechnol Genet Eng Rev ; : 1-17, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36760060

RESUMO

Microglia polarization and microglia-mediated inflammation play a crucial role in the development of ischaemic brain injury. Electroacupuncture (EA) has the function of anti-inflammatory, which has been thoroughly validated and utilized to treat ischemic brain damage. The fundamental mechanism by which EA alleviates ischemic brain damage by decreasing microglia polarization and microglia-mediated inflammation, however, remains unknown. In the current study, the activation of microglia and inflammatory cytokines was analyzed to confirm the anti-inflammatory function of EA in middle cerebral artery occlusion (MCAO) rats. Whole-transcriptome sequencing was used to examine the differentially expressed lncRNAs in the control, MCAO, and MCAO +EA groups. Our findings demonstrated that EA treatment reduced microglia activation and inflammatory cytokine production. In addition, there are 44 lncRNAs were found significantly different in three groups, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of the predicted targets of these lncRNAs suggested that the Hippo pathway may contribute to the development of ischaemic brain injury and to the anti-inflammatory function of EA. Moreover, our data showed that lncRNA TCONS_00022826 (Lnc826) was upregulated in MCAO group, whereas blocked by EA treatment. Furthermore, in vitro OGD cell model data showed that Lnc826 promoted M1 polarization of microglia by regulating the Hippo pathway. Our data suggested that regulating microglia polarization via Lnc826-mediated hippo pathway is a possible mechanism of the EA treatment on ischemic brain injury.

3.
ACS Omega ; 7(8): 6601-6615, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252656

RESUMO

Currently, there is insufficient knowledge on the development of China's low-permeability gas reservoirs under ultrahigh-temperature and high-pressure conditions; furthermore, the actual development process is difficult and has high technical demands. For example, the Ledong block in the South China Sea is a typical gas reservoir characterized using ultrahigh temperature (190 °C), high pressure (90 MPa), high water production, and low permeability (less than 1 mD). However, it is difficult to determine the factors influencing its production capacity, and the application of the traditional production capacity model is problematic because of the production of water. Accordingly, this study, which is based on the seepage theory, considers the influence of water production on the productivity of a single well; this study establishes an evaluation method for a low-permeability water-bearing gas reservoir vertical well (i.e., a highly deviated well) to determine how an unsteady state affects productivity. This method comprehensively considers stress sensitivity, initial pressure gradient, gas-water permeability, formation thickness, absolute permeability, supply radius, discharge radius, and well deviation angles to clarify the main factors affecting the productivity of single wells. Statistical methods are used to calculate and analyze the key influential factors, and this study provides quantitative evaluation methods to understand the productivity (and its influencing factors) of both vertical and highly deviated wells and the law of productivity decline. The model calculates the unblocked flow rate for 18 years as 319 × 104 m3/d. Compared with the actual production unblocked flow rate of 332 × 104 m3/d, the average error is 3.9%, which is within the allowed engineering range. Research shows the following order of factor influence on productivity: produced water-gas volume ratio > permeability > stress sensitivity coefficient > reservoir thickness > start-up pressure gradient > well deviation angle > discharge radius. Water saturation is the main factor affecting the unsteady-state productivity of gas wells in low-permeability gas reservoirs. In this study, with a production time of 100 days, the water saturation increases from 45 to 85%, and the open flow of the gas well decreases significantly from 30.1 × 104 to 1.6 × 104 m3/d, which is a decrease of 94.7%. Moreover, a continuous increase in the stress sensitivity coefficient, start-up pressure gradient, and water saturation caused a leftward shift in the inflow performance relationship curves of the modeled gas wells, whereas their production decreased.

4.
ACS Omega ; 7(6): 5366-5375, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187351

RESUMO

Owing to limitations imposed by the experimental requirements, it is difficult to carry out pressure-volume-temperature experiments on CO2-containing natural gas in high-temperature and ultrahigh-pressure gas reservoirs. Relevant research is also insufficient, which has led to a lack of clarity in current understanding of the microscopic mechanism of variations in the deviation factor of high-CO2 natural gas under high-temperature and ultrahigh-pressure conditions. This has greatly limited the development of natural gas reservoirs containing CO2. To reveal the microscopic mechanism of variations in the deviation factor of natural gas containing CO2 as a function of pressure under high-temperature and high-pressure conditions, by physical simulation experiments, the deviation factors of samples of sour natural gas with known CO2 contents from the Ledong gas reservoir were determined. Then, according to the idealized parameters of the physical experiment, a molecular model of natural gas containing CO2 was established using molecular simulation methods. Changes in molecular density, molecular volume, nonbonding interaction energy, potential energy, and kinetic energy during variations in the deviation factor of a CO2-containing natural gas system as a function of pressure under high-temperature and ultrahigh-pressure conditions were quantitatively studied. Using molecular simulation techniques, it was found that the changes in total energy, kinetic energy, and potential energy between molecules are the internal factors that cause variations in the deviation factor of natural gas systems containing CO2 under ultrahigh-temperature and high-pressure conditions. The results show that the increase of carbon dioxide content in natural gas will cause the total energy of natural gas molecules to decrease when the pressure is constant. This means that the higher the CO2 content in natural gas, the easier it will be compressed. This study should lay the foundation for investigating the mechanisms of the occurrence of CO2-containing natural gas, as well as facilitating the exploitation of CO2-containing natural gas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA