Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Apoptosis ; 28(7-8): 1060-1075, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37060507

RESUMO

The aberrantly up-regulated CDK9 can be targeted for cancer therapy. The CDK inhibitor dinaciclib (Dina) has been found to drastically sensitizes cancer response to TRAIL-expressing extracellular vesicle (EV-T). However, the low selectivity of Dina has limited its application for cancer. We propose that CDK9-targeted siRNA (siCDK9) may be a good alternative to Dina. The siCDK9 molecules were encapsulated into EV-Ts to prepare a complexed nanodrug (siEV-T). It was shown to efficiently suppress CDK9 expression and overcome TRAIL resistance to induce strikingly augmented apoptosis in lung cancer both in vitro and in vivo, with a mechanism related to suppression of both anti-apoptotic factors and nuclear factor-kappa B pathway. Therefore, siEV-T potentially constitutes a novel, highly effective and safe therapy for cancers.


Assuntos
Neoplasias Pulmonares , NF-kappa B , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Apoptose , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Quinase 9 Dependente de Ciclina/genética
2.
Stem Cells Transl Med ; 12(11): 758-774, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37740533

RESUMO

Up to now, impaired bone regeneration severely affects the healing of bone fractures, thus bringing tremendous suffering to patients. As a vital mediator between inflammatory response and bone regeneration, M2 macrophage-derived exosomes (M2-Exos) attenuate inflammation and promote tissue repair. However, due to a lack of specific targeting property, M2-Exos will be rapidly eliminated after systematic administration, thus compromising their effectiveness in promoting bone regeneration. To solve this hurdle, we initially harvested and characterized the pro-osteogenic properties of M2-Exos. A bone marrow mesenchymal stem cell (BMSC)-specific aptamer was synthesized and 3-way junction (3WJ) RNA nanoparticles were applied to conjugate the BMSC-specific aptamer and M2-Exos. In vitro assays revealed that M2-Exos bore the representative features of exosomes and significantly promoted the proliferation, migration, and osteogenic differentiation of BMSCs. 3WJ RNA nanoparticles-aptamer functionalized M2-Exos (3WJ-BMSCapt/M2-Exos) maintained the original physical characteristics of M2-Exos, but bore a high specific binding ability to BMSCs. Furthermore, when being systemically administered in the mice model with femoral bone fractures, these functionalized M2-Exos mainly accumulated at the bone fracture site with a slow release of exosomal cargo, thereby significantly accelerating the healing processes compared with the M2-Exos group. Our study indicated that the 3WJ-BMSCapt/M2-Exos with BMSCs targeting ability and controlled release would be a promising strategy to treat bone fractures.


Assuntos
Aptâmeros de Nucleotídeos , Exossomos , Fraturas Ósseas , Camundongos , Animais , Humanos , Osteogênese , Exossomos/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Macrófagos , Fraturas Ósseas/metabolismo , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA