Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 122(19): 15082-15176, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35728004

RESUMO

Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.


Assuntos
Nanoestruturas , Fônons
2.
Nano Lett ; 23(19): 8891-8897, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726256

RESUMO

Two-dimensional chiral metasurfaces seem to contradict Lord Kelvin's geometric definition of chirality since they can be made to coincide by performing rotational operations. Nevertheless, most planar chiral metasurface designs often use complex meta-atom shapes to create flat versions of three-dimensional helices, although the visual appearance does not improve their chiroptical response but complicates their optimization and fabrication due to the resulting large parameter space. Here we present one of the geometrically simplest two-dimensional chiral metasurface platforms consisting of achiral dielectric rods arranged in a square lattice. Chirality is created by rotating the individual meta-atoms, making their arrangement chiral and leading to chiroptical responses that are stronger or comparable to more complex designs. We show that resonances depending on the arrangement are robust against geometric variations and behave similarly in experiments and simulations. Finally, we explain the origin of chirality and behavior of our platform by simple considerations of the geometric asymmetry and gap size.

3.
Angew Chem Int Ed Engl ; 63(11): e202319920, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38236010

RESUMO

Due to their broken symmetry, chiral plasmonic nanostructures have unique optical properties and numerous applications. However, there is still a lack of comprehension regarding how chirality transfer occurs between circularly polarized light (CPL) and these structures. Here, we thoroughly investigate the plasmon-assisted growth of chiral nanoparticles from achiral Au nanocubes (AuNCs) via CPL without the involvement of any chiral molecule stimulators. We identify the structural chirality of our synthesized chiral plasmonic nanostructures using circular differential scattering (CDS) spectroscopy, which is correlated with scanning electron microscopy imaging at both the single-particle and ensemble levels. Theoretical simulations, including hot-electron surface maps, reveal that the plasmon-induced chirality transfer is mediated by the asymmetric distribution of hot electrons on achiral AuNCs under CPL excitation. Furthermore, we shed light on how this plasmon-induced chirality transfer can also be utilized for chiral growth in bimetallic systems, such as Ag or Pd on AuNCs. The results presented here uncover fundamental aspects of chiral light-matter interaction and have implications for the future design and optimization of chiral sensors and chiral catalysis, among others.

4.
Nano Lett ; 18(11): 7343-7349, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30359028

RESUMO

A templated electrochemical technique for patterning macroscopic arrays of single-crystalline Si micro- and nanowires with feature dimensions down to 5 nm is reported. This technique, termed three-dimensional electrochemical axial lithography (3DEAL), allows the design and parallel fabrication of hybrid silicon nanowire arrays decorated with complex metal nano-ring architectures in a flexible and modular approach. While conventional templated approaches are based on the direct replication of a template, our method can be used to perform high-resolution lithography on pre-existing nanostructures. This is made possible by the synthesis of a porous template with tunable dimensions that guides the deposition of well-defined metallic shells around the Si wires. The synthesis of a variety of ring architectures composed of different metals (Au, Ag, Fe, and Ni) with controlled sequence, height, and position along the wire is demonstrated for both straight and kinked wires. We observe a strong enhancement of the Raman signal for arrays of Si nanowires decorated with multiple gold rings due to the plasmonic hot spots created in these tailored architectures. The uniformity of the fabrication method is evidenced by a homogeneous increase in the Raman signal throughout the macroscopic sample. This demonstrates the reliability of the method for engineering plasmonic fields in three dimensions within Si wire arrays.

5.
Nat Commun ; 15(1): 2008, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443418

RESUMO

Van der Waals (vdW) materials, including hexagonal boron nitride (hBN), are layered crystalline solids with appealing properties for investigating light-matter interactions at the nanoscale. hBN has emerged as a versatile building block for nanophotonic structures, and the recent identification of native optically addressable spin defects has opened up exciting possibilities in quantum technologies. However, these defects exhibit relatively low quantum efficiencies and a broad emission spectrum, limiting potential applications. Optical metasurfaces present a novel approach to boost light emission efficiency, offering remarkable control over light-matter coupling at the sub-wavelength regime. Here, we propose and realise a monolithic scalable integration between intrinsic spin defects in hBN metasurfaces and high quality (Q) factor resonances, exceeding 102, leveraging quasi-bound states in the continuum (qBICs). Coupling between defect ensembles and qBIC resonances delivers a 25-fold increase in photoluminescence intensity, accompanied by spectral narrowing to below 4 nm linewidth and increased narrowband spin-readout efficiency. Our findings demonstrate a new class of metasurfaces for spin-defect-based technologies and pave the way towards vdW-based nanophotonic devices with enhanced efficiency and sensitivity for quantum applications in imaging, sensing, and light emission.

6.
Nat Commun ; 14(1): 7222, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940676

RESUMO

Structured light has proven useful for numerous photonic applications. However, the current use of structured light in optical fiber science and technology is severely limited by mode mixing or by the lack of optical elements that can be integrated onto fiber end-faces for wavefront engineering, and hence generation of structured light is still handled outside the fiber via bulky optics in free space. We report a metafiber platform capable of creating arbitrarily structured light on the hybrid-order Poincaré sphere. Polymeric metasurfaces, with unleashed height degree of freedom and a greatly expanded 3D meta-atom library, were 3D laser nanoprinted and interfaced with polarization-maintaining single-mode fibers. Multiple metasurfaces were interfaced on the fiber end-faces, transforming the fiber output into different structured-light fields, including cylindrical vector beams, circularly polarized vortex beams, and arbitrary vector field. Our work provides a paradigm for advancing optical fiber science and technology towards fiber-integrated light shaping, which may find important applications in fiber communications, fiber lasers and sensors, endoscopic imaging, fiber lithography, and lab-on-fiber technology.

7.
Light Sci Appl ; 12(1): 250, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828041

RESUMO

The realization of lossless metasurfaces with true chirality crucially requires the fabrication of three-dimensional structures, constraining experimental feasibility and hampering practical implementations. Even though the three-dimensional assembly of metallic nanostructures has been demonstrated previously, the resulting plasmonic resonances suffer from high intrinsic and radiative losses. The concept of photonic bound states in the continuum (BICs) is instrumental for tailoring radiative losses in diverse geometries, especially when implemented using lossless dielectrics, but applications have so far been limited to planar structures. Here, we introduce a novel nanofabrication approach to unlock the height of individual resonators within all-dielectric metasurfaces as an accessible parameter for the efficient control of resonance features and nanophotonic functionalities. In particular, we realize out-of-plane symmetry breaking in quasi-BIC metasurfaces and leverage this design degree of freedom to demonstrate an optical all-dielectric quasi-BIC metasurface with maximum intrinsic chirality that responds selectively to light of a particular circular polarization depending on the structural handedness. Our experimental results not only open a new paradigm for all-dielectric BICs and chiral nanophotonics, but also promise advances in the realization of efficient generation of optical angular momentum, holographic metasurfaces, and parity-time symmetry-broken optical systems.

8.
ACS Appl Energy Mater ; 5(5): 5307-5317, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35647497

RESUMO

Vertically aligned silicon nanowire (VA-SiNW) arrays can significantly enhance light absorption and reduce light reflection for efficient light trapping. VA-SiNW arrays thus have the potential to improve solar cell design by providing reduced front-face reflection while allowing the fabrication of thin, flexible, and efficient silicon-based solar cells by lowering the required amount of silicon. Because their interaction with light is highly dependent on the array geometry, the ability to control the array morphology, functionality, and dimension offers many opportunities. Herein, after a short discussion about the remarkable optical properties of SiNW arrays, we report on our recent progress in using chemical and electrochemical methods to structure and pattern SiNW arrays in three dimensions, providing substrates with spatially controlled optical properties. Our approach is based on metal-assisted chemical etching (MACE) and three-dimensional electrochemical axial lithography (3DEAL), which are both affordable and large-scale wet-chemical methods that can provide a spatial resolution all the way down to the sub-5 nm range.

9.
J Phys Chem C Nanomater Interfaces ; 125(50): 27661-27670, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34970380

RESUMO

A variety of multisegmented nanorods (NRs) composed of dense Au and porous Rh and Ru segments with lengths controlled down to ca. 10 nm are synthesized within porous anodic aluminum oxide membranes. Despite the high Rh and Ru porosity (i.e., ∼40%), the porous metal segments are able to efficiently couple with the longitudinal localized surface plasmon resonance (LSPR) of Au NRs. Finite-difference time-domain simulations show that the LSPR wavelength can be precisely tuned by adjusting the Rh and Ru porosity. Additionally, light absorption inside Rh and Ru segments and the surface electric field (E-field) at Rh and Ru can be independently and selectively enhanced by varying the position of the Rh and Ru segment within the Au NR. The ability to selectively control and decouple the generation of high-energy, surface hot electrons and low-energy, bulk hot electrons within photocatalytic metals such as Rh and Ru makes these bimetallic structures great platforms for fundamental studies in plasmonics and hot-electron science.

10.
Chem Mater ; 32(21): 9425-9434, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33191979

RESUMO

The combination of metal-assisted chemical etching (MACE) with colloidal lithography has emerged as a simple and cost-effective approach to nanostructure silicon. It is especially efficient at synthesizing Si micro- and nanowire arrays using a catalytic metal mesh, which sinks into the silicon substrate during the etching process. The approach provides a precise control over the array geometry, without requiring expensive nanopatterning techniques. Although MACE is a high-throughput solution-based approach, achieving large-scale homogeneity can be challenging because of the instability of the metal catalyst when the experimental parameters are not set appropriately. Such instabilities can lead to metal film fracture, significantly damaging the substrate and thus compromising the nanowire array quality. Here, we report on the critical parameters that influence the stability of the metal catalyst layer for achieving large-scale homogeneous MACE: etchant composition, metal film thickness, adhesion layer thickness, nanowire diameter and pitch, metal film coverage, Si/Au/etchant interface length, and crystalline quality of the colloidal template (grain size and defects). Our results investigate the origin of the catalyst film fracture and reveal that MACE experiments should be optimized for each Si wire array geometry by keeping the etch rate below a certain threshold. We show that the Si/Au/etchant interface length also affects the etch rate and should thus be considered when optimizing the MACE experimental parameters. Finally, our results demonstrate that colloidal templates with small grain sizes (i.e., <100 µm2) can yield significant problems during the pattern transfer because of a high density of defects at the grain boundaries that negatively affects the metal film stability. As such, this work provides guidelines for the large-scale synthesis of Si micro- and nanowire arrays via MACE, relevant for both new and experienced researchers working with MACE.

11.
ACS Appl Mater Interfaces ; 12(11): 13140-13147, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32129591

RESUMO

We report on a quick, simple, and cost-effective solution-phase approach to prepare centimeter-sized morphology-graded vertically aligned Si nanowire arrays. Gradients in the nanowire diameter and shape are encoded through the macroscale substrate via a "dip-etching" approach, where the substrate is removed from a KOH etching solution at a constant rate, while morphological control at the nanowire level is achieved via sequential metal-assisted chemical etching and KOH etching steps. This combined approach provides control over light absorption and reflection within the nanowire arrays at both the macroscale and nanoscale, as shown by UV-vis spectroscopy and numerical three-dimensional finite-difference time-domain simulations. Macroscale morphology gradients yield arrays with gradually changing optical properties. Nanoscale morphology control is demonstrated by synthesizing arrays of bisegmented nanowires, where the nanowires are composed of two distinct segments with independently controlled lengths and diameters. Such nanowires are important to tailor light-matter interactions in functional devices, especially by maximizing light absorption at specific wavelengths and locations within the nanowires.

12.
ACS Appl Mater Interfaces ; 12(47): 52581-52587, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33169967

RESUMO

Metal-silicon nanowire array photoelectrodes provide a promising architecture for water-splitting because they can afford high catalyst loading and decouple charge separation from the light absorption process. To further improve and understand these hybrid nanowire photoelectrodes, control of the catalyst amount and location within the wire array is required. Such a level of control is currently synthetically challenging to achieve. Here, we report the synthesis of cm2-sized hybrid silicon nanowire arrays with electrocatalytically active Ni-Mo and Pt patches placed at defined vertical locations within the individual nanowires. Our method is based on a modified three-dimensional electrochemical axial lithography (3DEAL), which combines metal-assisted chemical etching (MACE) to produce Si nanowires with spatially defined SiO2 protection layers to selectively cover and uncover specific areas within the nanowire arrays. This spatioselective SiO2 passivation yields nanowire arrays with well-defined exposed Si surfaces, with feature sizes down to 100 nm in the axial direction. Subsequent electrodeposition directs the growth of the metal catalysts at the exposed silicon surfaces. As a proof of concept, we report photoelectrocatalytic activity of the deposited catalysts for the hydrogen evolution reaction on p-type Si nanowire photocathodes. This demonstrates the functionality of these hybrid metal/Si nanowire arrays patterned via 3DEAL, which paves the way for investigations of the influence of three-dimensional geometrical parameters on the conversion efficiency of nanostructured photoelectrodes interfaced with metal catalysts.

14.
ACS Appl Mater Interfaces ; 9(4): 3931-3939, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28094914

RESUMO

We report the isotropic etching of 2D and 3D polystyrene (PS) nanosphere hcp arrays using a benchtop O2 radio frequency plasma cleaner. Unexpectedly, this slow isotropic etching allows tuning of both particle diameter and shape. Due to a suppressed etching rate at the point of contact between the PS particles originating from their arrangement in 2D and 3D crystals, the spherical PS templates are converted into polyhedral structures with well-defined hexagonal cross sections in directions parallel and normal to the crystal c-axis. Additionally, we found that particles located at the edge (surface) of the hcp 2D (3D) crystals showed increased etch rates compared to those of the particles within the crystals. This indicates that 2D and 3D order affect how nanostructures chemically interact with their surroundings. This work also shows that the morphology of nanostructures periodically arranged in 2D and 3D supercrystals can be modified via gas-phase etching and programmed by the superlattice symmetry. To show the potential applications of this approach, we demonstrate the lithographic transfer of the PS template hexagonal cross section into Si substrates to generate Si nanowires with well-defined hexagonal cross sections using a combination of nanosphere lithography and metal-assisted chemical etching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA