Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 26(8): 9984-9999, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715943

RESUMO

Fullerene in the plasmon fullerene cavity is utilized to propagate plasmon energy in order to break the confinement of the plasmonic coupling effect, which relies on the influential near-field optical region. It acts as a plasmonic inductor for coupling gold nano-islands to the gold film; the separation distances of the upper and lower layers are longer than conventional plasmonic cavities. This coupling effect causes the discrete and continuum states to cooperate together in a cavity and produces asymmetric curve lines in the spectra, producing a hybridized resonance. The effect brings about a bright and saturated displaying film with abundant visible colors. In addition, the reflection spectrum is nearly omnidirectional, shifting by only 5% even when the incident angle changes beyond ± 60°. These advantages allow plasmon fullerene cavities to be applied to reflectors, color filters, visible chromatic sensors, and large-area display.

2.
Sci Rep ; 6: 32884, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27616161

RESUMO

Bone tissue engineering provides many advantages for repairing skeletal defects. Although many different kinds of biomaterials have been used for bone tissue engineering, safety issues must be considered when using them in a clinical setting. In this study, we examined the effects of using a common clinical item, a hemostatic gelatin sponge, as a scaffold for bone tissue engineering. The use of such a clinically acceptable item may hasten the translational lag from laboratory to clinical studies. We performed both degradation and biocompatibility studies on the hemostatic gelatin sponge, and cultured preosteoblasts within the sponge scaffold to demonstrate its osteogenic differentiation potential. In degradation assays, the gelatin sponge demonstrated good stability after being immersed in PBS for 8 weeks (losing only about 10% of its net weight and about 54% decrease of mechanical strength), but pepsin and collagenases readily biodegraded it. The gelatin sponge demonstrated good biocompatibility to preosteoblasts as demonstrated by MTT assay, confocal microscopy, and scanning electron microscopy. Furthermore, osteogenic differentiation and the migration of preosteoblasts, elevated alkaline phosphatase activity, and in vitro mineralization were observed within the scaffold structure. Each of these results indicates that the hemostatic gelatin sponge is a suitable scaffold for bone tissue engineering.


Assuntos
Gelatina/química , Osteoblastos/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Hemostáticos , Camundongos , Osteoblastos/metabolismo , Osteogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA