Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 92(11): 7770-7777, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32348126

RESUMO

Titanium carbide quantum dots (Ti3C2 QDs) derived from two-dimensional (2D) Ti3C2Tx (MXene) are the rising-star material recently. Herein, nitrogen-doped Ti3C2 QDs (N-Ti3C2 QDs) were synthesized via a solvothermal method. The obtained N-Ti3C2 QDs exhibited excitation-dependent photoluminescence, antiphotobleaching, and dispersion stability. Furthermore, by combining the N-Ti3C2 QDs and DAP (2,3-diaminophenazine, the oxidative product of o-phenylenediamine) as a composite nanoprobe (N-Ti3C2 QDs@DAP), we developed a dual-emission reverse change ratiometric sensor to quantitatively monitor H2O2 based on photoinduced electron-transfer effects, where N-Ti3C2 QDs acted as the donor and DAP as the acceptor. On the basis of the xanthine converting into H2O2 through the catalysis of xanthine oxidase, the N-Ti3C2 QDs@DAP nanoprobe was also exploited for xanthine sensing. As a result, the proposed assay was demonstrated to be highly sensitive for H2O2 and xanthine with detection limits of 0.57 and 0.34 µM, respectively. In a word, we have investigated the application of N-Ti3C2 QDs in H2O2 and xanthine sensing and opened a new and exciting avenue for the N-Ti3C2 QDs in biosensing.


Assuntos
Peróxido de Hidrogênio/análise , Fenazinas/química , Pontos Quânticos/química , Titânio/química , Xantina/análise , Técnicas Biossensoriais , Medições Luminescentes , Nitrogênio/química , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície
2.
Mikrochim Acta ; 187(9): 492, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770422

RESUMO

A novel label-free and exonuclease III (Exo III)-assisted signal amplification electrochemical aptasensor was constructed for the determination of carcinoembryonic antigen (CEA) via magnetic field-induced self-assembly of magnetic biocomposites (Fe3O4@Au NPs-S1-S2-S3). The magnetic biocomposites were acquired by modifying double-stranded DNA (S1-S2-S3) on the surface of Fe3O4@Au nanoparticles (Fe3O4@Au NPs). Among them, Fe3O4@Au NPs were used as carriers for magnetic separation, thiolated single-stranded DNA (S1) provided signal sequence, CEA aptamer (S2) worked as a recognition element, and complementary strand (S3) was used to form double strands. In the presence of CEA, S2 bonded with CEA competitively; the exposed S1 could not be cleaved since Exo III was inactive against ssDNA. The G-quadruplex/hemin complexes finally formed with the existence of K+, and the high electrochemical signal of G-quadruplex/hemin complexes was recorded by differential pulse voltammetry (DPV) at - 0.6 V. Conversely, in the absence of CEA, dsDNA was cleaved from the 3' blunt end by Exo III; the disappearance of G-rich sequence blocked the generation of the signal. This method exhibited good selectivity and sensitivity for the determination of CEA; the linear range was from 0.1 to 200 ng mL-1 and the limit of detection was 0.4 pg mL-1. Graphical abstract.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Antígeno Carcinoembrionário/sangue , Técnicas Eletroquímicas/métodos , Exodesoxirribonucleases/química , Antígeno Carcinoembrionário/química , DNA de Cadeia Simples/química , Ouro/química , Humanos , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Nanopartículas de Magnetita/química , Técnicas de Amplificação de Ácido Nucleico
3.
Mikrochim Acta ; 187(10): 575, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32970233

RESUMO

A highly sensitive and selective electrochemical biosensor for Pb2+ with a dual-amplification strategy is proposed. The first amplification step was realized by the cycle of Pb2+ and 8-17 DNAzyme (S2), and the hybridization chain reaction (HCR) triggered by S1 further amplified the electrochemical signal. Fe3O4@Au NPs, as a multifunctional magnetic carrier, is not only manifested in the construction of a magnetically controlled electrochemical response interface, but also has significant contribution in the purifying system, reducing interference, increasing the specific surface area, and the DNA loading. The magnetic nanocomposites were characterized by TEM as spheres with particle size of around 39 nm. When there was no Pb2+, long double-strand DNA (dsDNA) is formed on the surface of Fe3O4@Au NPs by the S1-triggered HCR; in the presence of Pb2+, S2 is activated and S1 on the surface of magnetic biocomposites (Fe3O4@Au NPs-S1) is continuously cleaved with the cycle of Pb2+ and S2, leading to a significant decrease of methylene blue (MB) absorbed on dsDNA. Such reverse dual-signal amplification strategy effectively increased the current difference and improved the sensitivity of the proposed sensor. The electrochemical signal of MB was obtained by differential pulse voltammetry (DPV) with preconcentration, showing a linear response toward Pb2+ ranging from 50 pM to 1 µM with a detection limit of 15 pM. The proposed method has feasible applications in detecting other heavy metal ions based on other metal-dependent DNAzyme. Graphical Abstract.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Técnicas Eletroquímicas/métodos , Hibridização de Ácido Nucleico/métodos , Humanos , Fenômenos Magnéticos
4.
Mikrochim Acta ; 186(6): 356, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31098714

RESUMO

The authors describe a versatile aptasensing scheme based on the use of polypyrrole nanoparticles (PPyNPs) and DNA-silver nanoclusters (DNA-AgNCs) for multiple target detection. The DNA-AgNCs consist of two functional domains, viz. (a) a nucleation domain for attaching the metal core of the nanoclusters, and (b) a recognition domain which consists of a single-stranded aptamer. In the absence of analytes, the single-strand recognition domain will be absorbed onto the surface of the PPyNPs through π stacking and hydrophobic interactions. As a result, the red fluorescence of the DNA-AgNCs (with excitation/emission peaks at 535/625 nm) is quenched by the PPyNPs. On introducing the analytes, the DNA-AgNCs will bind them. This leads to the desorption of DNA-AgNCs and the recovery of the red fluorescence. Based on the above strategy, a versatile, sensitive and selective aptasensor was established for detection of adenosine, thrombin and interferon-gamma. The method was applied to the detection of the above targets in (spiked) serum samples and gave satisfactory results, with detection limit of 0.58 nM for IFN-γ, 0.39 nM for adenosine, and 2.2 nM for thrombin. The use of PPyNPs results in uniquely low non-specific absorption and in improved analytical results in case of real-sample analysis when compared to previously reported methods. Graphical abstract Schematic illustration of DNA-silver nanoclusters and polypyrrole nanoparticles in an aptasensor for detection of multiple targets.


Assuntos
Adenosina/análise , DNA/química , Interferon gama/análise , Polímeros/química , Pirróis/química , Prata/química , Trombina/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Fluorometria , Nanoestruturas/química
5.
ACS Appl Mater Interfaces ; 15(21): 25838-25848, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37202222

RESUMO

In this work, the ultrathin two-dimensional (2D) indium oxide (InOx) with a large area of more than 100 µm2 and a high degree of uniformity was automatically peeled off from indium by the liquid-metal printing technique. Raman and optical measurements revealed that 2D-InOx has a polycrystalline cubic structure. By altering the printing temperature which affects the crystallinity of 2D-InOx, the mechanism of the existence and disappearance of memristive characteristics was established. The tunable characteristics of the 2D-InOx memristor with reproducible one-order switching was manifest from the electrical measurements. Further adjustable multistate characteristics of the 2D-InOx memristor and its resistance switching mechanism were evaluated. A detailed examination of the memristive process demonstrated the Ca2+ mimic dynamic in 2D-InOx memristors as well as the fundamental principles underlying biological and artificial synapses. These surveys allow us to comprehend a 2D-InOx memristor using the liquid-metal printing technique and could be applied to future neuromorphic applications and in the field of revolutionary 2D material exploration.

6.
J Hazard Mater ; 439: 129657, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35905609

RESUMO

The presence of trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) in the subsurface can generate a dissolved phase plume in groundwater. This study developed an alkaline activated sodium persulfate (SPS) sustained release oxidation rod (alkaline SPS SR-Rod) for long-term in situ chemical oxidation accelerated treatment of TCE dissolved from TCE DNAPL, by creating a greater concentration gradient at the TCE DNPL boundary. The dissolution of TCE DNAPL (1 mL) in water (280 mL) generated ~700 mg L-1, with a volumetric mass transfer coefficient (kLa) of 0.0187 d-1. The alkaline SPS SR-Rod system had a kLa of 0.013 d-1 for TCE dissolution at early stage, and thereafter aqueous TCE concentration remained below ~10 mg L-1 over 60 d of reaction. An SPS SR-Rod life-span of 186 d, for 90% of SPS released from the rod, was estimated. In the soil-water system, aqueous TCE was maintained < 3 mg L- 1 throughout the reaction and the soil oxidant demand was determined to be ~4 g-SPS/kg-soil in the alkaline SPS SR-Rod system. These results revealed that the use of the alkaline SPS SR-Rod can be effective as a method of treating dissolved TCE released from DNAPL contamination, and thereby accelerating TCE DNAPL removal.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Preparações de Ação Retardada , Compostos de Sódio , Solo , Sulfatos , Poluentes Químicos da Água/análise
7.
Food Chem ; 368: 130838, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34425336

RESUMO

Herein, using Fe3O4 nanoparticles (Fe3O4 NPs) as a magnetic artificial peroxidase, an "on-off" ratiometric photoluminescence sensor with high-sensitivity and high-selectivity for coumarin was constructed based on photoinduced electron transfer (PET) between 7-hydroxycoumarin and rhodamine B (RB). The results showed that Fe3O4 NPs catalyzed H2O2 to generate nucleophilic group ·OH, which attacked the active site of coumarin and produced strong fluorescent 7-hydroxycoumarin molecules. Then, the fluorescence of RB was quenched with 7-hydroxycoumarin through the PET effect. The ratio signal generated in the above process was used for the quantitative detection of coumarin. Under optimized conditions, the linear range 0.5-25 mg/L was acquired for coumarin with the detection limit of 0.016 mg/L. This method had excellent selectivity and the recovery rate was 81.8%-106.8% with the relative standard deviation less than 5.6%, so it can be used for the quantitative analysis of coumarin in complex matrix samples.


Assuntos
Peróxido de Hidrogênio , Nanopartículas , Cumarínicos , Fluorescência , Tomografia por Emissão de Pósitrons
8.
ACS Biomater Sci Eng ; 7(6): 2767-2773, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33940791

RESUMO

Hydrogen peroxide (H2O2) has been reported to mediate a variety of physiological and pathological processes in living systems. In this work, a biosensor for determination of H2O2 was prepared by using an HRP/Ti3C2/Nafion film-modified glassy carbon electrode (GCE). Ti3C2 nanosheets with remarkable conductivity and high specific surface area were chosen as carriers for HRP. Moreover, this biosensor modified with HRP has a specific catalytic effect on H2O2. The difference in peak current could reflect the quantitative change of H2O2. The linear range of the biosensor is 5-8000 µM, and the detection limit is 1 µM (S/N = 3). This biosensor was used to detect H2O2 in clinical serum samples of normal controls and patients with acute myocardial infarction (AMI) before and after percutaneous coronary intervention (PCI). The results showed that the difference between normal controls and patients is significant (P < 0.05), as well as the difference for patients before and after PCI (P < 0.01), but no significant difference existed between postoperative patients and normal controls. This biosensor has the advantages of simple preparation, high sensitivity, and quick detection, showing potential application in clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Infarto do Miocárdio , Intervenção Coronária Percutânea , Polímeros de Fluorcarboneto , Humanos , Peróxido de Hidrogênio , Infarto do Miocárdio/diagnóstico , Titânio
9.
ACS Biomater Sci Eng ; 6(5): 3132-3138, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33463306

RESUMO

In this research, we attempted to develop a sensitive colorimetric sensing strategy for the detection of acid phosphatase (ACP) based on MnO2 nanosheets and explored its applications in screening and evaluating inhibitors of ACP. The MnO2 nanosheets exhibit intrinsic biomimetic oxidase activity, which can catalyze the oxidation of the colorless 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonate) diammonium salt (ABTS) into green oxidized ABTS (oxABTS). Upon the introduction of ACP, l-ascorbic acid-2-phosphate can be dephosphorylated to ascorbic acid, which arouses the disintegration of MnO2 nanosheets into Mn2+ ions. This disintegration weakens the enzyme mimicking activity of the MnO2 nanosheets, leading to the impediment of the oxidation of ABTS. Conversely, in the absence of ACP, the ABTS is rapidly oxidized by MnO2, leading to a significant colorimetric signal change. The absorbance difference at 420 nm displayed a linear relationship with the concentration of ACP ranging from 0.075 to 0.45 mU·mL-1, generating a detection limit of 0.046 mU·mL-1. In the inhibition assays, this sensing platform provided simple detection for parathion-methyl (PM), a representative inhibitor of ACP. The facile evaluation of the inhibitory effect of PM, including its IC50 toward ACP, was also realized.


Assuntos
Colorimetria , Nanoestruturas , Fosfatase Ácida , Biomimética , Compostos de Manganês , Óxidos , Oxirredutases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA