RESUMO
OBJECTIVE: Non-small cell lung cancer (NSCLC) is a prevailing LC characterized by poor outcomes. AlkB homolog 5 (ALKBH5) functions as a tumor suppressor in several cancers. This study delved into the role of ALKBH5 in NSCLC development. METHODS: TCGA database predicted ALKBH5 expression in NSCLC patients. ALKBH5 levels in NSCLC and human bronchial epithelial cells were determined. pcDNA3.1-ALKBH5/NC, pcDNA3.1-SLC7A11/NC, and ferrostatin-1 were used to explore the interactions among ALKBH5, SLC7A11, and ferroptosis. SLC7A11 mRNA and its protein levels were measured by RT-qPCR and Western blot. Cell viability, apoptosis, migration, and invasion were assessed by CCK-8, flow cytometry, and Transwell. Total N6-methyladenosine (m6A) quantification and its enrichment on SLC7A11 mRNA were determined, followed by the observation of Ki67, ALKBH5 and SLC7A11-positive cell numbers. Glutathione (GSH), lipid reactive oxygen species (lipid-ROS), malondialdehyde (MDA), and iron ion contents were determined. Animal experiments further analyzed the role of ALKBH5 in tumor development and glutathione peroxidase 4 (GPX4) expression. RESULTS: Bioinformatics analysis revealed the lowly-expressed ALKBH5 in LC patients. ALKBH5 was downregulated in NSCLC cells and its upregulation repressed proliferation activity, invasion, and migration, and facilitated apoptosis. ALKBH5 upregulation decreased GSH, increased lipid-ROS, MDA, and iron ion contents, and downregulated SLC7A11 by reducing m6A modification. SLC7A11 upregulation partly annulled the effect of ALKBH5 overexpression on cell ferroptosis and malignant behaviors. In vivo assays elucidated the suppression of ALKBH5 upregulation on tumor development and GPX4 levels. CONCLUSION: ALKBH5 upregulation downregulates SLC7A11 transcription by decreasing m6A modification, thus promoting NSCLC cell ferroptosis and ultimately repressing NSCLC progression.
Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Sistema y+ de Transporte de Aminoácidos , Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Ferroptose/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Desmetilação , Camundongos Nus , Camundongos , Masculino , Camundongos Endogâmicos BALB C , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Adenosina/análogos & derivados , Adenosina/metabolismoRESUMO
BACKGROUND: Adoptive transfer of engineered immune cells is a promising strategy for cancer treatment. However, low transduction efficiency particularly when large payload lentiviral vectors are used on primary T cells is a limitation for the development of cell therapy platforms that include multiple constructs bearing long DNA sequences. RB-340-1 is a new CAR T cell that combines two strategies in one product through a CRISPR interference (CRISPRi) circuit. Because multiple regulatory components are included in the circuit, RB-340-1 production needs delivery of two lentiviral vectors into human primary T cells, both containing long DNA sequences. To improve lentiviral transduction efficiency, we looked for inhibitors of receptors involved in antiviral response. BX795 is a pharmacological inhibitor of the TBK1/IKKÉ complex, which has been reported to augment lentiviral transduction of human NK cells and some cell lines, but it has not been tested with human primary T cells. The purpose of this study was to test if BX795 treatment promotes large payload RB-340-1 lentiviral transduction of human primary T cells. METHODS: To make the detection of gene delivery more convenient, we constructed another set of RB-340-1 constructs containing fluorescent labels named RB-340-1F. We incorporated BX795 treatment into the human primary T cell transduction procedure that was optimized for RB-340-1F. We tested BX795 with T cells collected from multiple donors, and detected the effect of BX795 on T cell transduction, phenotype, cell growth and cell function. RESULTS: We found that BX795 promotes RB-340-1F lentiviral transduction of human primary T cells, without dramatic change in cell growth and T cell functions. Meanwhile, BX795 treatment increased CD8+ T cell ratios in transduced T cells. CONCLUSIONS: These results indicate that BX795 treatment is effective, and might be a safe approach to promote RB-340-1F lentiviral transduction of human primary T cells. This approach might also be helpful for other T cell therapy products that need delivery of complicated platform via large payload lentiviral vectors.
Assuntos
Vetores Genéticos , Lentivirus , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Lentivirus/genética , Proteínas Serina-Treonina Quinases , Pirimidinas , Tiofenos , Transdução GenéticaRESUMO
A patient with recurrent multifocal glioblastoma received chimeric antigen receptor (CAR)-engineered T cells targeting the tumor-associated antigen interleukin-13 receptor alpha 2 (IL13Rα2). Multiple infusions of CAR T cells were administered over 220 days through two intracranial delivery routes - infusions into the resected tumor cavity followed by infusions into the ventricular system. Intracranial infusions of IL13Rα2-targeted CAR T cells were not associated with any toxic effects of grade 3 or higher. After CAR T-cell treatment, regression of all intracranial and spinal tumors was observed, along with corresponding increases in levels of cytokines and immune cells in the cerebrospinal fluid. This clinical response continued for 7.5 months after the initiation of CAR T-cell therapy. (Funded by Gateway for Cancer Research and others; ClinicalTrials.gov number, NCT02208362 .).
Assuntos
Linfócitos T CD8-Positivos/imunologia , Glioblastoma/terapia , Imunoterapia Adotiva , Recidiva Local de Neoplasia/terapia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Engenharia Celular , Terapia Combinada , Humanos , Subunidade alfa2 de Receptor de Interleucina-13 , Masculino , Pessoa de Meia-IdadeRESUMO
Platelets (PLTs) are classically used in the clinical setting to maintain hemostasis. Recent evidence supports important roles for PLTs in host inflammatory and immune responses, and PLT-rich plasma has been demonstrated to inhibit the growth of bacteria in vitro and in vivo; however, few studies have examined whether PLTs can inhibit bacterial growth directly, and related mechanisms have not been elucidated further. Accordingly, in this study, we evaluated the effects of PLTs on bacterial growth. We washed and purified PLTs from peripheral blood, then confirmed that PLTs significantly inhibited the growth of Staphylococcus aureus when cocultured in vitro. Moreover, PLTs damaged DNA and blocked cell division in S. aureus. During coculture, PLT-derived TGF-ß1 was dramatically down-regulated compared with that in PLT culture alone, and the addition of TGF-ß1 to the coculture system promoted the inhibition of PLTs on S. aureus. Analysis of a murine S. aureus infection model demonstrated that the depletion of PLTs exacerbated the severity of infection, whereas the transfusion of PLTs alleviated this infection. Our observations demonstrate that PLTs could directly inhibit the growth of S. aureus by damaging DNA and blockage cell division, and that PLT-derived TGF-ß1 may play an important role in this machinery.-Xu, J., Yi, J., Zhang, H., Feng, F., Gu, S., Weng, L., Zhang, J., Chen, Y., An, N., Liu, Z., An, Q., Yin, W., Hu, X. Platelets directly regulate DNA damage and division of Staphylococcus aureus.
Assuntos
Plaquetas/imunologia , Divisão Celular , Dano ao DNA , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/genética , Animais , Células Cultivadas , DNA Bacteriano/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismoRESUMO
T cell immunotherapy is emerging as a powerful strategy to treat cancer and may improve outcomes for patients with glioblastoma (GBM). We have developed a chimeric antigen receptor (CAR) T cell immunotherapy targeting IL-13 receptor α2 (IL13Rα2) for the treatment of GBM. Here, we describe the optimization of IL13Rα2-targeted CAR T cells, including the design of a 4-1BB (CD137) co-stimulatory CAR (IL13BBζ) and a manufacturing platform using enriched central memory T cells. Utilizing orthotopic human GBM models with patient-derived tumor sphere lines in NSG mice, we found that IL13BBζ-CAR T cells improved anti-tumor activity and T cell persistence as compared to first-generation IL13ζ-CAR CD8+ T cells that had shown evidence for bioactivity in patients. Investigating the impact of corticosteroids, given their frequent use in the clinical management of GBM, we demonstrate that low-dose dexamethasone does not diminish CAR T cell anti-tumor activity in vivo. Furthermore, we found that local intracranial delivery of CAR T cells elicits superior anti-tumor efficacy as compared to intravenous administration, with intraventricular infusions exhibiting possible benefit over intracranial tumor infusions in a multifocal disease model. Overall, these findings help define parameters for the clinical translation of CAR T cell therapy for the treatment of brain tumors.
Assuntos
Glioblastoma/imunologia , Glioblastoma/metabolismo , Imunoterapia Adotiva , Subunidade alfa2 de Receptor de Interleucina-13/antagonistas & inibidores , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Anticorpos Antineoplásicos/imunologia , Antígenos CD19/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Citotoxicidade Imunológica , Dextroanfetamina/farmacologia , Modelos Animais de Doenças , Ordem dos Genes , Engenharia Genética , Vetores Genéticos/genética , Glioblastoma/mortalidade , Glioblastoma/terapia , Humanos , Imunoterapia Adotiva/métodos , Subunidade alfa2 de Receptor de Interleucina-13/imunologia , Camundongos , Receptores de Antígenos Quiméricos/química , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Hematopoietic stem cells (HSCs) are the most primitive cells in the hematopoietic system and are under tight regulation for self-renewal and differentiation. Notch signals are essential for the emergence of definitive hematopoiesis in mouse embryos and are critical regulators of lymphoid lineage fate determination. However, it remains unclear how Notch regulates the balance between HSC self-renewal and differentiation in the adult bone marrow (BM). Here we report a novel mechanism that prevents HSCs from undergoing premature lymphoid differentiation in BM. Using a series of in vivo mouse models and functional HSC assays, we show that leukemia/lymphoma related factor (LRF) is necessary for HSC maintenance by functioning as an erythroid-specific repressor of Delta-like 4 (Dll4) expression. Lrf deletion in erythroblasts promoted up-regulation of Dll4 in erythroblasts, sensitizing HSCs to T-cell instructive signals in the BM. Our study reveals novel cross-talk between HSCs and erythroblasts, and sheds a new light on the regulatory mechanisms regulating the balance between HSC self-renewal and differentiation.
Assuntos
Proteínas de Ligação a DNA/genética , Eritroblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Proteínas de Ligação ao Cálcio , Diferenciação Celular/genética , Proliferação de Células , Microambiente Celular/genética , Proteínas de Ligação a DNA/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Linfócitos T/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcriptoma/genéticaRESUMO
Treatment options for epidermal growth factor receptor (EGFR)-mutant advanced non-small cell lung cancer (NSCLC) following tyrosine kinase inhibitor (TKI) failure are limited, and platinum-based chemotherapy remains the main treatment. The development of effective immunotherapy for this disease has been challenging. In the present study, 37 patients with EGFR-mutant advanced NSCLC who were treated with programmed cell death-1 (PD-1) inhibitor-based combinations after TKI failure were reviewed. The total cohort had a median progression-free survival (mPFS) of 5.2 months (95% CI, 4.077-6.323 months) and a median overall survival (mOS) of 18.3 months (95% CI, 12.932-23.668 months). Patients with Eastern Cooperative Oncology Group performance-status (ECOG-PS) scores of 0 or 1 had longer mPFS than those with ECOG-PS scores of 2 (5.4 vs. 2.4 months; P=0.006). In addition, a PFS benefit was observed in patients with EGFR T790M-negative compared with EGFR T790M-positive tumors (mPFS 6.2 vs. 4.4 months; P=0.041). Patients treated with immunotherapy-based combinations as a front-line therapy had a longer mPFS than those in which the combinations were used as a late-line therapy (6.2 vs. 2.4 months; P<0.001). PD-1 inhibitor combined with chemotherapy and bevacizumab did not show a clear advantage over PD-1 inhibitor combined with chemotherapy alone (mPFS, 6.2 vs. 4.4 months; P=0.681), although it resulted in an improved overall response rate (ORR) and disease control rate. Notably, the 7 patients with a programmed cell death ligand-1 (PD-L1) tumor proportion score of ≥50% had an ORR of 100% and an mPFS of 8.3 months. Therefore, it is suggested that PD-1 inhibitor-based combinations should be a priority treatment option in selective populations, such as those with low ECOG-PS scores, T790M-negative status or high PD-L1 expression in EGFR-mutant NSCLC after TKI failure. The use of immunotherapy and chemotherapy in combination with antiangiogenic agents appears to be a promising combination therapy for such patients.
RESUMO
OBJECTIVE: This retrospective analysis aimed to evaluate the efficacy and adverse reactions of metronomic oral vinorelbine and its combination therapy as second- and later-line regimens for advanced non-small-cell lung cancer (NSCLC). METHODS: NSCLC patients undergoing metronomic oral vinorelbine as second- and later-line regimens in Fujian Cancer Hospital from October 2018 to October 2022 were enrolled, and patients' demographic and clinical characteristics were collected. The efficacy and safety of metronomic oral vinorelbine monotherapy and its combination therapy regimens were compared. RESULTS: Of 57 study subjects, 63.2% received third- and later-line therapy, with median progression-free survival (mPFS) of 4 months, overall response rate (ORR) of 10.5%, and disease control rate (DCR) of 80.7%. The incidence of therapy-related adverse events was 42.1%, and there was only one case presenting grades 3 and 4 adverse events (1.8%). Among driver gene-negative participants, vinorelbine combination therapy regimens achieved longer mPFS (4.6 vs. 1.2 months, hazards ratio = 0.11, P < 0.0001) and comparable toxicity in relative to metronomic oral vinorelbine, and metronomic oral vinorelbine combined with immune checkpoint inhibitors showed the highest response, with mPFS of 5.6 months (95% CI 4.8 to 6.4 months), ORR of 25%, and DCR of 81.3%. Among participants with gradual resistance to osimertinib, continuing osimertinib in combination with metronomic oral vinorelbine achieved mPFS of 6.3 months (95% CI 0.1 to 12.5 months) and DCR of 86.7%. CONCLUSION: Metronomic oral vinorelbine and its combination therapy regimens are favorable options as second- and later-line therapy for advanced NSCLC patients, with acceptable efficacy and tolerable toxicity. Vinorelbine combination therapy regimens show higher efficacy and comparable toxicity in relative to metronomic oral vinorelbine, and metronomic oral vinorelbine may have a synergistic effect with immunotherapy and EGFR-TKI targeted therapy.
RESUMO
Objective: The difference in the tumor microenvironment (TME) between primary breast cancer (PBC) and breast cancer brain metastasis (BCBM) is still unknown. Herein, we present the landscape of the TME in PBC and BCBM to better understand the process of BCBM. Methods: The Gene Expression Omnibus (GEO) database was used to obtain suitable PBC and BCBM data. Hub genes that were differentially expressed between the two groups were searched. Gene Ontology (GO) and KEGG were used to define the gene's function. Single-cell data were also analyzed to determine the difference between PBC and BCBM. Results: Two datasets (GSE100534 and GSE125989) were used to search for hub genes, and 79 genes were either upregulated or downregulated between the two groups. Four hub genes (COL1A1, PDGFR, MMP3 and FZD7) were related to prognosis. GO and KEGG analyses showed that extracellular matrix and focal adhesion play major roles in the metastasis process. Another two datasets (GSE176078 and GSE186344) were enrolled for single-cell analysis. Single-cell analysis demonstrated that immune cells (66.6 %) form the main part of PBC, while cancer-associated fibroblasts (CAFs) (21.7 %) are the main component of BCBM. Immune cell proportion analysis showed that CD4+/CD8+ T cells (28.9 % and 14.3 %, respectively) and macrophages(M2) accounted for the majority of cells in PBC and BCBM, respectively. Further analysis of the classification of CAFs showed that apCAFs were significantly higher in PBC. Conclusions: This study presents the landscape of BCBM with hub gene searching and single-cell analysis. Showing the difference in the tumor/immune microenvironment of PBC and BCBM, would be beneficial to explore immunotherapy and targeted therapy for BCBM.
RESUMO
Importance: Patients with high-risk newly diagnosed multiple myeloma (NDMM) often have poor outcomes with standard treatments, necessitating novel effective frontline therapies to enhance clinical outcomes. GC012F, a B-cell maturation antigen/CD19 dual-targeting chimeric antigen receptor (CAR) T-cell therapy, has been developed on the novel FasTCAR platform. Notably, its use as a frontline therapy for patients with high-risk NDMM who are eligible for transplant has not been thoroughly explored. Objective: To examine the safety, pharmacokinetics, and patient health and survival outcomes associated with GC012F in individuals with NDMM. Design, Setting, and Participants: Patients were enrolled in this single-arm, open-label phase 1 cohort study between June 28, 2021, and June 1, 2023 (the data cutoff date). All patients included in this study were treated at a single center, Shanghai Changzheng Hospital. The patients in the efficacy evaluation were followed up for a minimum period of 3 months. Intervention: Patients underwent 2 cycles of induction therapy, followed by GC012F infusion (at 1 × 105 cells/kg, 2 × 105 cells/kg, or 3 × 105 cells/kg). Main Outcomes and Measures: The primary goals were to assess the safety, efficacy, and pharmacokinetics of GC012F at various dose levels. Results: Of 22 patients receiving GC012F treatment, 6 experienced mild to moderate cytokine release syndrome (grade 1-2) and none experienced neurotoxic effects. Nineteen patients were included in the efficacy evaluation, and all 19 patients showed stringent complete responses and achieved minimal residual disease negativity. The treatment's effectiveness was consistent across different dose levels. GC012F demonstrated a rapid response, with a median time to first stringent complete response of 84 days (range, 26-267 days) and achieving minimal residual disease negativity within 28 days (range, 23-135 days). The CAR T-cell expansion was robust, with a median peak copy number of 60â¯652 copies/µg genomic DNA (range, 8754-331â¯159 copies/µg genomic DNA), and the median time to median peak copy number was 10 days (range, 9-14 days). Conclusions and Relevance: The findings of this single-arm, open-label phase 1 cohort study suggest that GC012F may be a safe treatment associated with positive health and survival outcomes for patients with high-risk NDMM eligible for transplant. Owing to the small sample size, further studies with larger cohorts and longer follow-up durations are needed.
Assuntos
Antígenos CD19 , Antígeno de Maturação de Linfócitos B , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Feminino , Antígeno de Maturação de Linfócitos B/antagonistas & inibidores , Antígeno de Maturação de Linfócitos B/imunologia , Idoso , Antígenos CD19/imunologia , Antígenos CD19/uso terapêutico , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Adulto , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Resultado do TratamentoRESUMO
BACKGROUND: Treatment options for advanced non-small-cell lung cancer (NSCLC) after osimertinib failure are limited, and osimertinib continuation is recommended for selected patients. Metronomic oral vinorelbine is an effective treatment with less toxicity for advanced NSCLC. OBJECTIVE: The objective of the study was to investigate the effects of osimertinib plus metronomic oral vinorelbine on epidermal growth factor receptor (EGFR)-mutant advanced NSCLC beyond limited progression on osimertinib. METHODS: We have reviewed the medical records of 28 patients with EGFR-mutant advanced NSCLC who had received osimertinib continuation plus metronomic oral vinorelbine beyond limited progression on osimertinib. We also evaluated the clinicopathological characteristics of enrolled patients, as well as the efficacy and toxicity of the treatment. RESULTS: After a median follow-up period of 14.1 months, 57.1% (16/28) of cases showed NSCLC progression. The median progression-free survival (PFS) period under osimertinib plus metronomic oral vinorelbine was 9.4 months (95% confidence interval, 1.562-17.238 months), with a disease control rate of 89.3% and objective response rate of 17.9%. PFS did not differ between patients who had previously received osimertinib as first- (n = 16) and second-line (n = 12) therapy (median, 11.4 and 4.7 months, P = 0.391). In addition, the median PFS duration did not differ according to the efficacy (PFS2 ≥ 6 months vs. <6 months) of previous osimertinib monotherapy (median, 5.8 and 9.4 months, P = 0.677). CONCLUSIONS: Osimertinib continuation in conjunction with metronomic oral vinorelbine may enable overcoming TKI resistance and prolong the survival of patients with EGFR-mutant advanced NSCLC beyond limited progression on osimertinib treatment.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Vinorelbina , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Compostos de Anilina , Receptores ErbB/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
High-grade (WHO grades III-IV) glioma remains one of the most lethal human cancers. Adoptive transfer of tumor-targeting chimeric antigen receptor (CAR)-redirected T cells for high-grade glioma has revealed promising indications of anti-tumor activity, but objective clinical responses remain elusive for most patients. A significant challenge to effective immunotherapy is the highly heterogeneous structure of these tumors, including large variations in the magnitudes and distributions of target antigen expression, observed both within individual tumors and between patients. To obtain a more detailed understanding of immunotherapy target antigens within patient tumors, we immunochemically mapped at single cell resolution three clinically-relevant targets, IL13Rα2, HER2 and EGFR, on tumor samples drawn from a 43-patient cohort. We observed that within individual tumor samples, expression of these antigens was neither random nor uniform, but rather that they mapped into local neighborhoods - phenotypically similar cells within regions of cellular tumor - reflecting not well understood properties of tumor cells and their milieu. Notably, tumor cell neighborhoods of high antigen expression were not arranged independently within regions. For example, in cellular tumor regions, neighborhoods of high IL13Rα2 and HER2 expression appeared to be reciprocal to those of EGFR, while in areas of pseudopalisading necrosis, expression of IL13Rα2 and HER2, but not EGFR, appeared to reflect the radial organization of tumor cells around hypoxic cores. Other structural features affecting expression of immunotherapy target antigens remain to be elucidated. This structured but heterogeneous organization of antigen expression in high grade glioma is highly permissive for antigen escape, and combinatorial antigen targeting is a commonly suggested potential mitigating strategy. Deeper understanding of antigen expression within and between patient tumors will enhance optimization of combination immunotherapies, the most immediate clinical application of the observations presented here being the importance of including (wild-type) EGFR as a target antigen.
Assuntos
Glioblastoma , Glioma , Subunidade alfa2 de Receptor de Interleucina-13 , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Glioma/tratamento farmacológico , Glioma/terapia , Humanos , Imunoterapia , Imunoterapia Adotiva , Subunidade alfa2 de Receptor de Interleucina-13/genética , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Wide-spread application of chimeric antigen receptor (CAR) T cell therapy for cancer is limited by the current use of autologous CAR T cells necessitating the manufacture of individualized therapeutic products for each patient. To address this challenge, we have generated an off-the-shelf, allogeneic CAR T cell product for the treatment of glioblastoma (GBM), and present here the feasibility, safety, and therapeutic potential of this approach. METHODS: We generated for clinical use a healthy-donor derived IL13Rα2-targeted CAR+ (IL13-zetakine+) cytolytic T-lymphocyte (CTL) product genetically engineered using zinc finger nucleases (ZFNs) to permanently disrupt the glucocorticoid receptor (GR) (GRm13Z40-2) and endow resistance to glucocorticoid treatment. In a phase I safety and feasibility trial we evaluated these allogeneic GRm13Z40-2 T cells in combination with intracranial administration of recombinant human IL-2 (rhIL-2; aldesleukin) in six patients with unresectable recurrent GBM that were maintained on systemic dexamethasone (4-12 mg/day). RESULTS: The GRm13Z40-2 product displayed dexamethasone-resistant effector activity without evidence for in vitro alloreactivity. Intracranial administration of GRm13Z40-2 in four doses of 108 cells over a two-week period with aldesleukin (9 infusions ranging from 2500-5000 IU) was well tolerated, with indications of transient tumor reduction and/or tumor necrosis at the site of T cell infusion in four of the six treated research subjects. Antibody reactivity against GRm13Z40-2 cells was detected in the serum of only one of the four tested subjects. CONCLUSIONS: This first-in-human experience establishes a foundation for future adoptive therapy studies using off-the-shelf, zinc-finger modified, and/or glucocorticoid resistant CAR T cells.
Assuntos
Glioblastoma , Subunidade alfa2 de Receptor de Interleucina-13 , Dexametasona , Glioblastoma/patologia , Glucocorticoides , Humanos , Imunoterapia Adotiva , Esteroides , Linfócitos T , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Renal cell carcinoma (RCC) is one of the leading causes of cancer mortality. Characterization of microRNA (miRNA) expression of RCC will help disclose new pathogenic pathways in tumourigenesis and progression and may lead to the development of molecular biomarkers and target-specific therapies for diagnosis, prognostication and treatment. With limitations in test specificity and the ability to detect novel miRNA and other small non-coding RNAs (smRNAs), microarray and RT-PCR techniques are being replaced by the evolving deep-sequencing technologies, at least in the discovery phase. Until now, cancer miRNA profiling of human benign and tumour specimen sets, using smRNA deep-sequencing (smRNA-seq), has not been reported. Specifically, due to concern over possible poor RNA quality/integrity, formalin-fixed paraffin-embedded (FFPE) samples have not been used for such studies. Here, we performed whole-genome smRNA-seq analysis using a benign and RCC specimen set and have successfully profiled the miRNA expression. Studies performed on paired frozen and FFPE specimens showed very similar results. Moreover, a comparison study of microarray, deep-sequencing and RT-PCR methodologies also showed a high correlation among the three technologies. To our knowledge, this is the first study to demonstrate that FFPE specimens can be used reliably for miRNA deep-sequencing analysis, making future large-scale clinical cohort/trial-based studies possible.
Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Análise por Conglomerados , Criopreservação , Formaldeído , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Inclusão em Parafina , RNA Neoplásico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fixação de Tecidos/métodosRESUMO
PURPOSE: This single-center, open-label, single-arm, phase II clinical trial aimed to examine the efficacy and safety of the first-generation EGFR-TKIs combined with chemotherapy among treatment-naïve advanced non-small-cell lung cancer (NSCLC) patients harboring sensitive EGFR mutations. MATERIALS AND METHODS: Patients with advanced EGFR-mutant NSCLC were given concurrent gefitinib (250 mg orally daily) and 3-week cycle of carboplatin plus pemetrexed for 4 to 6 cycles, followed by gefitinib maintenance until disease progression or unacceptable toxicity. The primary endpoint was progression-free survival (PFS), and the secondary endpoints were overall survival (OS), objective response rate (ORR), disease control rate (DCR) and safety. This trial was registered at ClinicalTrials.gov (NCT02886195). RESULTS: Of the 21 patients enrolled in this study, a 76.2% ORR and 100% DCR were observed and a higher ORR was seen in patients with EGFR 21L858R mutations than in those with 19del mutations (P = 0.012). The subjects had a median PFS of 15.0 months and a median OS of 26.0 months, and numerically longer PFS was seen in patients with EGFR 21L858R mutations than in those with 19del mutations (P = 0.281). There were 15 NSCLC patients without cerebral metastases at baseline, with 4 cases developing cerebral metastases during the treatment, and the 6-, 12- and 24-month cumulative incidence rates of the central nervous system metastasis were 6.67%, 13.3% and 26.7%, respectively. There were 17 subjects with progressive diseases tested for EGFR T790M mutations, and 11 cases were positive for T790M mutations. Grade 3 toxicity included neutropenia (9.5%), leukopenia (4.8%), liver dysfunction (9.5%) and diarrhea (4.8%), and no grade 4 adverse events or treatment-related death occurred. CONCLUSION: The combination of first-generation EGFR-TKIs and chemotherapy achieves a satisfactory PFS, ORR and DCR and well-tolerated toxicity in advanced NSCLC patients with EGFR mutations, notably in patients with EGFR L858R mutations.
RESUMO
Lymphomas with central nervous system (CNS) involvement confer a worse prognosis than those without CNS involvement, and patients currently have limited treatment options. T cells genetically engineered with CD19-targeted chimeric antigen receptors (CAR) are effective against B-cell malignancies and show tremendous potential in the treatment of systemic lymphoma. We aimed to leverage this strategy toward a more effective therapy for patients with lymphoma with CNS disease. NOD-scid IL2Rgammanull (NSG) mice with CNS and/or systemic lymphoma were treated with CD19-CAR T cells via intracerebroventricular (ICV) or intravenous (IV) injection. CAR T cells isolated after treatment were rigorously examined for phenotype, gene expression, and function. We observed that CAR T cells infused ICV, but not IV, completely and durably eradicated both CNS and systemic lymphoma. CAR T cells delivered ICV migrated efficiently to the periphery, homed to systemic tumors, and expanded in vivo, leading to complete elimination of disease and resistance to tumor rechallenge. Mechanistic studies indicated that ICV-delivered CAR T cells are conditioned by exposure to cerebrospinal fluid in the ICV environment for superior antilymphoma activity and memory function compared with IV-delivered CAR T cells. Further analysis suggested that manipulating cellular metabolism or preactivating therapeutic CAR T cells with antigen ex vivo may improve the efficacy of CAR T cells in vivo Our demonstration that ICV-delivered CD19-CAR T cells had activity against CNS and systemic lymphoma could offer a valuable new strategy for treatment of B-cell malignancies with CNS involvement.
Assuntos
Neoplasias do Sistema Nervoso Central/terapia , Imunoterapia Adotiva/métodos , Linfoma/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/metabolismo , Animais , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Humanos , Injeções Intravenosas , Injeções Intraventriculares , Linfoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
PURPOSE: The ceramide pathway is strongly associated with the regulation of tumor proliferation, differentiation, senescence, and apoptosis. This study aimed to explore the gene signatures, prognostic value, and immune-related effects of ceramide-regulated genes in lung adenocarcinoma (LUAD). METHODS: Public datasets of LUAD from The Cancer Genome Atlas and Gene Expression Omnibus were selected. Consensus clustering was adopted to classify LUAD patients, and a least absolute shrinkage and selection operator (LASSO) regression model was employed to develop a prognostic risk signature. CIBERSORT algorithm was used to estimate the association between the risk signature and the tumor immune microenvironment. RESULTS: Most of the 22 ceramide-regulated genes were differentially expressed between LUAD and normal samples. LUAD patients were classified into two subgroups (cluster 1 and 2) and cluster 2 was associated with a poor prognosis. Furthermore, a prognostic risk signature was developed based on the three ceramide-regulated genes, Cytochrome C (CYCS), V-rel reticuloendotheliosis viral oncogene homolog A (RELA) and Fas-associated via death domain (FADD). LUAD patients with low- and high-risk scores differed concerning the subtypes of tumor-infiltrating immune cells. A moderate to weak correlation was observed between the risk score and tumor-infiltrating immune cells. CONCLUSIONS: Ceramide-regulated genes could predict clinical prognostic risk and affect the tumor immune microenvironment in LUAD.
RESUMO
PURPOSE: The mammalian target of rapamycin complex 1 (mTORC1) signaling pathway plays a vital role in cancer development and progression. This study aimed to investigate the relationship between genotype variants in mTORC1 pathway and the risk of brain metastasis (BM) in patients with non-small cell lung cancer (NSCLC). METHODS: We extracted genomic DNA from blood samples of 501 NSCLC patients and genotyped eight single-nucleotide polymorphisms (SNPs) in three core genes [mammalian target of rapamycin (mTOR), mammalian lethal with sec-13 protein 8 (mLST8) and regulatory-associated protein of mTOR (RPTOR)] of the mTORC1 pathway. The associations between these SNPs and the risk of BM development were assessed. RESULTS: The AG/GG genotype of mLST8:rs26865 and TC/CC genotype of mLST8:rs3160 were associated with an increased risk of BM [hazard ratios (HR) 2.938, 95% confidence interval (CI) 1.664-5.189, p < 0.001 and HR = 2.490, 95% CI = 1.543-4.016, p < 0.001, respectively]. These risk polymorphisms had a cumulative effect on BM risk, with two risk genotypes exhibiting the highest increased risk (p < 0.001). Furthermore, these risk SNPs were associated with the lymph node metastasis (N2/3), body mass index (BMI) (≥ 25 kg/m2), high level of squamous cell carcinoma (SCC) antigen and Ki-67 proliferation index. Moreover, patients with AG/GG genotype of mLST8:rs26865 had significantly lower median overall survival than those with AA genotype (12.1 months versus 21.6 months, p = 0.04). CONCLUSIONS: Our results indicate that polymorphisms in mTORC1 pathway were significantly associated with increased risk of BM and may be valuable biomarkers to identify NSCLC patients with a high risk of BM.
Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA de Neoplasias/sangue , DNA de Neoplasias/genética , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos , Transdução de SinaisRESUMO
The Wingless-type (Wnt) signaling pathway plays an important role in the development and progression of cancer. This study aimed to evaluate the relationship between single nucleotide polymorphisms (SNPs) in the Wnt pathway and the risk of bone metastasis in patients with non-small cell lung cancer (NSCLC). We collected 500 blood samples from patients with NSCLC and genotyped eight SNPs from four core genes (WNT2, AXIN1, CTNNB1 and APC) present within the WNT pathway. Moreover, we assessed the potential relationship of these genes with bone metastasis development. Our results showed that the AC/AA genotype of CTNNB1: rs1880481 was associated with a decreased risk of bone metastasis. Polymorphisms with an HR of < 1 had a cumulative protective impact on the risk of bone metastasis. Furthermore, patients with the AC/AA genotype of CTNNB1: rs1880481 was associated with Karnofsky performance status score, squamous cell carcinoma antigen and Ki-67 proliferation index. Lastly, patients with the AC/AA genotype of CTNNB1: rs1880481 had significantly longer median progression free survival time than those with the CC genotype. In conclusion, SNPs within the Wnt signaling pathway are associated with a decreased risk of bone metastasis, and may be valuable biomarkers for bone metastasis in patients with NSCLC.
Assuntos
Neoplasias Ósseas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Polimorfismo de Nucleotídeo Único/genética , Via de Sinalização Wnt/genética , Biomarcadores Tumorais/sangue , Neoplasias Ósseas/epidemiologia , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/secundário , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Predisposição Genética para Doença/genética , Humanos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , beta Catenina/genéticaRESUMO
Diabetes mellitus (DM) is metabolism related problems that share the phenotype of hyperglycemia, which is triggered by a complicated interaction of hereditary and environmental elements. It is the main reason for end-stage renal disease (ESRD), amputations of the traumatic lower extremity, and grown-up visual impairment. It additionally inclines to neurodegenerative and cardiovascular sicknesses. With an expanding rate around the world, DM may be the main motive of morbidity and mortality within the foreseeable future. The objective of treatment for DM is to inhibit mortality and difficulties through normalizing blood glucose stage. Genistein, a naturally available soy isoflavone, is accounted for to have various medical advantages credited to numerous natural capacities. In the course of recent years, various examinations have shown that genistein has hostile to diabetic impacts, specifically, direct consequences for ß-cell expansion, glucose-triggered insulin discharge, and safety towards apoptosis, unbiased of its functions as an estrogen receptor agonist, cancer prevention agent, or tyrosine kinase inhibitor. The present evaluation emphases on the promising molecular and biochemical paths associated with DM complications and, specifically, the multi-target method of genistein in diminishing diabetic neuropathy, nephropathy, and retinopathy.