Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674138

RESUMO

The Japanese pine sawyer Monochamus alternatus serves as the primary vector for pine wilt disease, a devastating pine disease that poses a significant threat to the sustainable development of forestry in the Eurasian region. Currently, trap devices based on informational compounds have played a crucial role in monitoring and controlling the M. alternatus population. However, the specific proteins within M. alternatus involved in recognizing the aforementioned informational compounds remain largely unclear. To elucidate the spatiotemporal distribution of M. alternatus chemosensory-related genes, this study conducted neural transcriptome analyses to investigate gene expression patterns in different body parts during the feeding and mating stages of both male and female beetles. The results revealed that 15 genes in the gustatory receptor (GR) gene family exhibited high expression in the mouthparts, most genes in the odorant binding protein (OBP) gene family exhibited high expression across all body parts, 22 genes in the odorant receptor (OR) gene family exhibited high expression in the antennae, a significant number of genes in the chemosensory protein (CSP) and sensory neuron membrane protein (SNMP) gene families exhibited high expression in both the mouthparts and antennae, and 30 genes in the ionotropic receptors (IR) gene family were expressed in the antennae. Through co-expression analyses, it was observed that 34 genes in the IR gene family were co-expressed across the four developmental stages. The Antenna IR subfamily and IR8a/Ir25a subfamily exhibited relatively high expression levels in the antennae, while the Kainate subfamily, NMDA subfamily, and Divergent subfamily exhibited predominantly high expression in the facial region. MalIR33 is expressed only during the feeding stage of M. alternatus, the MalIR37 gene exhibits specific expression in male beetles, the MalIR34 gene exhibits specific expression during the feeding stage in male beetles, the MalIR8 and MalIR39 genes exhibit specific expression during the feeding stage in female beetles, and MalIR8 is expressed only during two developmental stages in male beetles and during the mating stage in female beetles. The IR gene family exhibits gene-specific expression in different spatiotemporal contexts, laying the foundation for the subsequent selection of functional genes and facilitating the full utilization of host plant volatiles and insect sex pheromones, thereby enabling the development of more efficient attractants.


Assuntos
Besouros , Proteínas de Insetos , Receptores Odorantes , Transcriptoma , Animais , Besouros/genética , Besouros/metabolismo , Besouros/crescimento & desenvolvimento , Masculino , Feminino , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Perfilação da Expressão Gênica , Antenas de Artrópodes/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo
2.
Bull Entomol Res ; 113(5): 615-625, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37466033

RESUMO

Rhynchophorus ferrugineus is a quarantine pest that mainly damages plants in tropical regions, which are essential economic resources. Cry3Aa has been used to control coleopteran pests and is known to be toxic to R. ferrugineus. The binding of the Cry toxin to specific receptors on the target insect plays a crucial role in the toxicological mechanism of Cry toxins. However, in the case of R. ferrugineus, the nature and identity of the receptor proteins involved remain unknown. In the present study, pull-down assays and mass spectrometry were used to identify two proteins of aminopeptidase N proteins (RfAPN2a and RfAPN2b) in the larval midguts of R. ferrugineus. Cry3Aa was able to bind to RfAPN2a (Kd = 108.5 nM) and RfAPN2b (Kd = 68.2 nM), as well as midgut brush border membrane vesicles (Kd = 482.5 nM). In silico analysis of both RfAPN proteins included the signal peptide and anchored sites for glycosyl phosphatidyl inositol. In addition, RfAPN2a and RfAPN2b were expressed in the human embryonic kidney 293T cell line, and cytotoxicity assays showed that the transgenic cells were not susceptible to activated Cry3Aa. Our results show that RfAPN2a and RfAPN2b are Cry3Aa-binding proteins involved in the Cry3Aa toxicity of R. ferrugineus. This study deepens our understanding of the action mechanism of Cry3Aa in R. ferrugineus larvae.


Assuntos
Bacillus thuringiensis , Besouros , Gorgulhos , Humanos , Animais , Besouros/metabolismo , Gorgulhos/metabolismo , Antígenos CD13/metabolismo , Endotoxinas/metabolismo , Endotoxinas/toxicidade , Larva/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidade , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade
3.
J Invertebr Pathol ; 189: 107726, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122837

RESUMO

The pine wilt disease is caused by the pinewood nematode Bursaphelenchus xylophilus and it results in serious ecological and economic losses. Therefore, effective prevention and control methods for the pinewood nematode are urgently required. Bacillus thuringiensis (Bt), a widely used microbial insecticide, produces toxins that are toxic to several species of parasitic nematodes, however, its effects on B. xylophilus have not been determined. In this study, Cry5Ba3, App6Aa2, Cry12Aa1, Cry13Aa1, Cry14Aa1, Cry21Aa3, Cry21Fa1, Xpp55Aa1, and Cyt8Aa1 toxins' nematocidal activity against B. xylophilus was evaluated, six toxins with high toxicity were identified: App6Aa2 (LC50 = 49.71 µg/mL), Cry13Aa1 (LC50 = 53.17 µg/mL), Cry12Aa1 (LC50 = 58.88 µg/mL), Cry5Ba3 (LC50 = 63.99 µg/mL), Xpp55Aa1 (LC50 = 65.14 µg/mL), and Cyt8Aa1 (LC50 = 96.50 µg/mL). The six toxins caused shrinkage and thinning of the intestinal cells, contraction of the intestine from the body wall, vacuolization, and degenerated appearance of the pinewood nematodes. The results of this study provide basic information to study the action mechanism of nematocidal toxins on the pinewood nematode and direction for the use of nematocidal toxins in the biological control of B. xylophilus.


Assuntos
Pinus , Rabditídios , Animais , Antinematódeos/farmacologia , Toxinas de Bacillus thuringiensis , Pinus/parasitologia , Xylophilus
4.
Mitochondrial DNA B Resour ; 8(3): 447-450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006958

RESUMO

Tenebroides mauritanicus Linnaeus, 1758 (Coleoptera: Trogossitidae) is a storage pest that feeds mainly on soybean and corn. In this study, we sequenced the entire mitochondrial genome of Tenebroides mauritanicus (GenBank accession number: OM161967). The total length of the mitochondrial genome is 15,696 bp, GC content is 29.65%, and the contents of each base is 38.37% A, 18.35% C, 11.30% G and 31.98% T, respectively. The genome encodes 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs) and 2 ribosomal RNA genes (rRNAs). Phylogenetic analysis showed that Tenebroides mauritanicus is clustered with Byturus ochraceus. This study provides a piece of valuable genomic information for the population genetics, phylogeny, and molecular taxonomy of Tenebroides mauritanicus.

5.
Pest Manag Sci ; 79(6): 2230-2238, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36756723

RESUMO

BACKGROUND: Pine wilt disease (PWD) is a destructive disease of pine trees caused by the pinewood nematode, Bursaphelenchus xylophilus. Fluopyram, a novel nematicide compound with systemic activity, is a prospective trunk-injection agent against pinewood nematodes. The disadvantage of current trunk-injection agents is that they were not evenly distributed in tree tissues and were poor in the persistence of effect and efficiency. Therefore, we investigated the spatiotemporal transport pattern and residue behavior of fluopyram following its injection into the trunk of Pinus massoniana. RESULTS: Fluopyram transport in the trunk occurred through radial diffusion and vertical uptake within 1 week of the injection, reaching all tissues of P. massoniana, including apical branches and needles. Three years after the field test, the infection of PWD declined substantially with treatment using the fluopyram trunk-injection agent, which demonstrated 100% efficacy in both the mild and moderate occurrence areas, and 71.1% efficacy in the severe occurrence area. Fluopyram as trunk-injection agent exerted substantial control over PWD, with its efficacy being influenced by the infection time of PWD. The half-life of 10% fluopyram in treated pine trees was 346.6 days with 3-year persistence. CONCLUSION: The advantages of overall distribution and long persistence of fluopyram in the tree after injection help explain its evident efficacy against PWN. Overall, fluopyram trunk-injection has potential to prevent PWD. © 2023 Society of Chemical Industry.


Assuntos
Pinus , Estudos Prospectivos , Antinematódeos , Benzamidas , Doenças das Plantas/prevenção & controle
6.
Mitochondrial DNA B Resour ; 7(8): 1571-1573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051368

RESUMO

Chalcophora japonica chinensis Schaufuss, 1879 (Coleoptera: Buprestidae) is a common pine pest in Chongqing, Fujian, Yunnan, and other in China. The mitochondrial genome of C. japonica is 15,759 bp in size. The genome includes 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs). The overall GC content of the mitogenome is 32.0%. The results showed that C. japonica was most related to Chrysochroa fulgidissima, Trachys variolaris, and Agrilus mali. The full mitochondrial genome of C. japonica is now available, allowing researchers to better understand the species' genetic evolution and regulatory strategies.

7.
Mitochondrial DNA B Resour ; 6(3): 1066-1067, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33796740

RESUMO

Phloeosinus perlatus Chapuis, 1875 (Coleoptera: Scolytinae) is a major boring pest of Chinese firs. The length of the complete mitochondria genome of P. perlatus was 17,054 bp with 29.7% GC content, including 30.0% A, 11.3% C, 18.4% G and 40.3% T. The genome encoded 13 protein-coding genes, 22 tRNAs, and 2 rRNAs. Phylogenetic analysis showed that P. perlatus was closely related to Scolytus seulensis. This study provided useful genetic information for the subsequent studying the prevention of P. perlatus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA