Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(29): e2122486119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858316

RESUMO

Body size is an important species trait, correlating with life span, fecundity, and other ecological factors. Over Earth's geological history, climate shifts have occurred, potentially shaping body size evolution in many clades. General rules attempting to summarize body size evolution include Bergmann's rule, which states that species reach larger sizes in cooler environments and smaller sizes in warmer environments, and Cope's rule, which poses that lineages tend to increase in size over evolutionary time. Tetraodontiform fishes (including pufferfishes, boxfishes, and ocean sunfishes) provide an extraordinary clade to test these rules in ectotherms owing to their exemplary fossil record and the great disparity in body size observed among extant and fossil species. We examined Bergmann's and Cope's rules in this group by combining phylogenomic data (1,103 exon loci from 185 extant species) with 210 anatomical characters coded from both fossil and extant species. We aggregated data layers on paleoclimate and body size from the species examined, and inferred a set of time-calibrated phylogenies using tip-dating approaches for downstream comparative analyses of body size evolution by implementing models that incorporate paleoclimatic information. We found strong support for a temperature-driven model in which increasing body size over time is correlated with decreasing oceanic temperatures. On average, extant tetraodontiforms are two to three times larger than their fossil counterparts, which otherwise evolved during periods of warmer ocean temperatures. These results provide strong support for both Bergmann's and Cope's rules, trends that are less studied in marine fishes compared to terrestrial vertebrates and marine invertebrates.


Assuntos
Evolução Biológica , Tamanho Corporal , Tetraodontiformes , Animais , Fósseis , Filogenia , Tetraodontiformes/anatomia & histologia , Tetraodontiformes/classificação , Tetraodontiformes/genética
2.
Syst Biol ; 72(3): 530-543, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-36331534

RESUMO

Phylogenomic analysis of large genome-wide sequence data sets can resolve phylogenetic tree topologies for large species groups, help test the accuracy of and improve resolution for earlier multi-locus studies and reveal the level of agreement or concordance within partitions of the genome for various tree topologies. Here we used a target-capture approach to sequence 1088 single-copy exons for more than 200 labrid fishes together with more than 100 outgroup taxa to generate a new data-rich phylogeny for the family Labridae. Our time-calibrated phylogenetic analysis of exon-capture data pushes the root node age of the family Labridae back into the Cretaceous to about 79 Ma years ago. The monotypic Centrogenys vaigiensis, and the order Uranoscopiformes (stargazers) are identified as the sister lineages of Labridae. The phylogenetic relationships among major labrid subfamilies and within these clades were largely congruent with prior analyses of select mitochondrial and nuclear datasets. However, the position of the tribe Cirrhilabrini (fairy and flame wrasses) showed discordance, resolving either as the sister to a crown julidine clade or alternatively sister to a group formed by the labrines, cheilines and scarines. Exploration of this pattern using multiple approaches leads to slightly higher support for this latter hypothesis, highlighting the importance of genome-level data sets for resolving short internodes at key phylogenetic positions in a large, economically important groups of coral reef fishes. More broadly, we demonstrate how accounting for sources of biological variability from incomplete lineage sorting and exploring systematic error at conflicting nodes can aid in evaluating alternative phylogenetic hypotheses. [coral reefs; divergence time estimation; exon-capture; fossil calibration; incomplete lineage sorting.].


Assuntos
Peixes , Perciformes , Animais , Filogenia , Perciformes/genética , Genoma
3.
Syst Biol ; 72(2): 419-432, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-36111797

RESUMO

Modularity is a ubiquitous feature of organismal design that plays an important role in structuring patterns of morphological diversification. Modularity can facilitate evolutionary changes by allowing subsets of traits to coevolve as integrated units and follow quasi-independent evolutionary trajectories, a pattern that may be particularly consequential in the case of highly complex morphological structures. Here we examine modularity in a complex and highly kinetic structure, the teleost skull, and ask if a modular organization of the skull has influenced the diversification dynamics of the shapes of its osteological components across the labrid phylogeny. We compiled one of the largest 3D morphological data sets of fishes to date and used geometric morphometrics to quantify patterns of cranial shape evolution across 184 species of wrasses (Labridae). We then tested several hypotheses of modularity inspired by functional and developmental relationships between cranial bones and compared phenotypic rates among modules. We also compared the fit of models of trait evolution for the entire skull and the various articulated bones that it comprises. Our analyses indicated strong support for a 2-module hypothesis, one that encompasses the oral and pharyngeal jaws and another module comprised of the neurocranium, hyoid apparatus, and operculum. This functional hypothesis yielded one of the highest significant rate differentials across modules, yet we also found that the best-fitting models of trait evolution differed among skull bones. These results suggest that modularity can influence morphological diversification in complex biological structures via differences in both the tempo and mode of evolutionary change. [3D geometric morphometrics, cranial morphology, evolutionary modularity, Labridae, phenotypic rates, structural complexity.].


Assuntos
Evolução Biológica , Crânio , Animais , Filogenia , Crânio/anatomia & histologia , Peixes/anatomia & histologia , Fenótipo
4.
Evol Dev ; 25(1): 73-84, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35971630

RESUMO

The evolution of behavioral and ecological specialization can have marked effects on the tempo and mode of phenotypic evolution. Head-first burrowing has been shown to exert powerful selective pressures on the head and body shapes of many vertebrate and invertebrate taxa. In wrasses, burrowing behaviors have evolved multiple times independently, and are commonly used in foraging and predator avoidance behaviors. While recent studies have examined the kinematics and body shape morphology associated with this behavior, no study to-date has examined the macroevolutionary implications of burrowing on patterns of phenotypic diversification in this clade. Here, we use three-dimensional geometric morphometrics and phylogenetic comparative methods to study the evolution of skull shape in fossorial wrasses and their relatives. We test for skull shape differences between burrowing and non burrowing wrasses and evaluate hypotheses of shape convergence among the burrowing wrasses. We also quantify rates of skull shape evolution between burrowing and non burrowing wrasses to test for whether burrowing constrains or accelerates rates of skull shape evolution in this clade. We find that while burrowing and non burrowing wrasses exhibit similar degrees of morphological disparity, for burrowing wrasses, it took nearly twice as long to amass this disparity. Furthermore, while the disparities between groups are evenly matched, we find that most burrowing species are confined to a particular region of shape space with most species exhibiting narrower heads than many non-burrowing species. These results suggest head-first burrowing constrains patterns of skull shape diversification in wrasses by potentially restricting the range of phenotypes that can perform this behavior.


Assuntos
Evolução Biológica , Perciformes , Animais , Filogenia , Crânio/anatomia & histologia , Cabeça/anatomia & histologia
5.
J Exp Biol ; 226(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37204298

RESUMO

Air sacs are a well-known aspect of insect tracheal systems, but have received little research attention. In this Commentary, we suggest that the study of the distribution and function of air sacs in tracheate arthropods can provide insights of broad significance. We provide preliminary phylogenetic evidence that the developmental pathways for creation of air sacs are broadly conserved throughout the arthropods, and that possession of air sacs is strongly associated with a few traits, including the capacity for powerful flight, large body or appendage size and buoyancy control. We also discuss how tracheal compression can serve as an additional mechanism for achieving advection in tracheal systems. Together, these patterns suggest that the possession of air sacs has both benefits and costs that remain poorly understood. New technologies for visualization and functional analysis of tracheal systems provide exciting approaches for investigations that will be of broad significance for understanding invertebrate evolution.


Assuntos
Sacos Aéreos , Artrópodes , Animais , Filogenia , Insetos , Traqueia
6.
Mol Phylogenet Evol ; 177: 107616, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35998799

RESUMO

Clades of marine fishes exhibit many patterns of diversification, ranging from relatively constant throughout time to rapid changes in the rates of speciation and extinction. The goatfishes (Syngnatharia: Mullidae) are a family of marine, reef associated fishes with a relatively recent origin, distributed globally in tropical and temperate waters. Despite their abundance and economic importance, the goatfishes remain one of the few coral reef families for which the species level relationships have not been examined using genomic techniques. Here we use phylogenomic analysis of ultra-conserved elements (UCE) and exon data to resolve a well-supported, time-calibrated phylogeny for 72 species of goatfishes, supporting a recent crown age of the goatfishes at 21.9 million years ago. We used this framework to test hypotheses about the associations among body shape morphometrics, taxonomy, and phylogeny, as well as to explore relative diversification rates across the phylogeny. Body shape was strongly associated with generic-level taxonomy of goatfishes, with morphometric analyses showing evidence for high phylogenetic signal across all morphotypes. Rates of diversification in this clade reveal a recent sharp increase in lineage accumulation, with 92% of the goatfish species sampled across all clades and major body plans having originated in just the past 5 million years. We suggest that habitat diversity in the early Pliocene oceans and the generalist ecology of goatfishes are key factors in the unusual evolutionary tempo of the family Mullidae.


Assuntos
Perciformes , Somatotipos , Animais , Recifes de Corais , Peixes , Perciformes/genética , Filogenia
7.
J Exp Biol ; 225(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35019979

RESUMO

Many fishes use substantial cranial kinesis to rapidly increase buccal cavity volume, pulling prey into the mouth via suction feeding. Living polypterids are a key lineage for understanding the evolution and biomechanics of suction feeding because of their phylogenetic position and unique morphology. Polypterus bichir have fewer mobile cranial elements compared with teleosts [e.g. immobile (pre)maxillae] but successfully generate suction through dorsal, ventral and lateral oral cavity expansion. However, the relative contributions of these motions to suction feeding success have not been quantified. Additionally, extensive body musculature and lack of opercular jaw opening linkages make P. bichir of interest for examining the role of cranial versus axial muscles in driving mandibular depression. Here, we analyzed the kinematics of buccal expansion during suction feeding in P. bichir using X-ray Reconstruction of Moving Morphology (XROMM) and quantified the contributions of skeletal elements to oral cavity volume expansion and prey capture. Mouth gape peaks early in the strike, followed by maximum cleithral and ceratohyal rotations, and finally by opercular and suspensorial abductions, maintaining the anterior-to-posterior movement of water. Using a new method of quantifying bones' relative contributions to volume change (RCVC), we demonstrate that ceratohyal kinematics are the most significant drivers of oral cavity volume change. All measured cranial bone motions, except abduction of the suspensorium, are correlated with prey motion. Lastly, cleithral retraction is largely concurrent with ceratohyal retraction and jaw depression, while the sternohyoideus maintains constant length, suggesting a central role of the axial muscles, cleithrum and ceratohyal in ventral expansion.


Assuntos
Comportamento Alimentar , Cinese , Animais , Fenômenos Biomecânicos , Comportamento Alimentar/fisiologia , Peixes , Arcada Osseodentária/fisiologia , Boca/fisiologia , Filogenia , Comportamento Predatório/fisiologia , Sucção
8.
J Exp Biol ; 223(Pt 2)2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31862848

RESUMO

For many fish species, rhythmic movement of the pectoral fins, or forelimbs, drives locomotion. In terrestrial vertebrates, normal limb-based rhythmic gaits require ongoing modulation with limb mechanosensors. Given the complexity of the fluid environment and dexterity of fish swimming through it, we hypothesize that mechanosensory modulation is also critical to normal fin-based swimming. Here, we examined the role of sensory feedback from the pectoral fin rays and membrane on the neuromuscular control and kinematics of pectoral fin-based locomotion. Pectoral fin kinematics and electromyograms of the six major fin muscles of the parrotfish, Scarus quoyi, a high-performance pectoral fin swimmer, were recorded during steady swimming before and after bilateral transection of the sensory nerves extending into the rays and surrounding membrane. Alternating activity of antagonistic muscles was observed and drove the fin in a figure-of-eight fin stroke trajectory before and after nerve transection. After bilateral transections, pectoral fin rhythmicity remained the same or increased. Differences in fin kinematics with the loss of sensory feedback also included fin kinematics with a significantly more inclined stroke plane angle, an increased angular velocity and fin beat frequency, and a transition to the body-caudal fin gait at lower speeds. After transection, muscles were active over a larger proportion of the fin stroke, with overlapping activation of antagonistic muscles rarely observed in the trials of intact fish. The increased overlap of antagonistic muscle activity might stiffen the fin system in order to enhance control and stability in the absence of sensory feedback from the fin rays. These results indicate that fin ray sensation is not necessary to generate the underlying rhythm of fin movement, but contributes to the specification of pectoral fin motor pattern and movement during rhythmic swimming.


Assuntos
Nadadeiras de Animais/fisiologia , Peixes/fisiologia , Natação/fisiologia , Animais , Fenômenos Biomecânicos , Eletromiografia/veterinária , Masculino
9.
Proc Natl Acad Sci U S A ; 114(17): 4459-4464, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28396411

RESUMO

The biomechanics of animal limbs has evolved to meet the functional demands for movement associated with different behaviors and environments. Effective movement relies not only on limb mechanics but also on appropriate mechanosensory feedback. By comparing sensory ability and mechanics within a phylogenetic framework, we show that peripheral mechanosensation has evolved with limb biomechanics, evolutionarily tuning the neuromechanical system to its functional demands. We examined sensory physiology and mechanics of the pectoral fins, forelimb homologs, in the fish family Labridae. Labrid fishes exhibit extraordinary morphological and behavioral diversity and use pectoral fin-based propulsion with fins ranging in shape from high aspect ratio (AR) wing-like fins to low AR paddle-like fins. Phylogenetic character analysis demonstrates that high AR fins evolved independently multiple times in this group. Four pairs of species were examined; each included a plesiomorphic low AR and a high AR species. Within each species pair, the high AR species demonstrated significantly stiffer fin rays in comparison with the low AR species. Afferent sensory nerve activity was recorded during fin ray bending. In all cases, afferents of stiffer fins were more sensitive at lower displacement amplitudes, demonstrating mechanosensory tuning to fin mechanics and a consistent pattern of correlated evolution. We suggest that these data provide a clear example of parallel evolution in a complex neuromechanical system, with a strong link between multiple phenotypic characters: pectoral fin shape, swimming behavior, fin ray stiffness, and mechanosensory sensitivity.


Assuntos
Evolução Biológica , Extremidades/fisiologia , Peixes/fisiologia , Locomoção/fisiologia , Percepção do Tato/fisiologia , Nadadeiras de Animais/fisiologia , Animais , Fenômenos Biomecânicos , Peixes/genética , Especificidade da Espécie , Natação , Percepção do Tato/genética
10.
J Exp Biol ; 222(Pt 8)2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30962280

RESUMO

Triggerfishes and filefishes (Balistoidea) use balistiform locomotion to power steady swimming with their dorsal and anal fins, and transition to a gait dominated by body and caudal fin (BCF) kinematics at high speeds. Fin and body shapes are predicted to be strong determinants of swimming performance and gait transitions. The goal of this study was to combine morphometrics and critical swimming tests to explore the relationships between fin and body shapes and swimming performance in a phylogenetic context in order to understand the evolution of balistiform swimming. Among 13 species of balistoid fishes, those with high aspect ratio fins tended to achieve higher critical swimming speeds than fishes with low aspect ratio fins. Species with long, large median fins and wide caudal peduncles used the balistiform gait alone for a larger percentage of their total critical swimming speed than fishes with short, small median fins and narrow caudal peduncles. Although analyses revealed overall positive relationships between median fin aspect ratios and gait transition speeds, fishes on both ends of the aspect ratio spectrum achieved higher swimming speeds using the balistiform gait alone than fishes with median fins of intermediate aspect ratios. Each species is specialized for taking advantage of one gait, with balistiform specialists possessing long, large median fins capable of the large power requirements of high-speed swimming using the median fins alone, while BCF specialists possess short, small median fins, ill-suited for powering high-speed balistiform locomotion, but narrow caudal peduncles capable of efficient caudal fin oscillations to power high-speed locomotion.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Marcha , Natação , Tetraodontiformes/anatomia & histologia , Tetraodontiformes/fisiologia , Animais , Fenômenos Biomecânicos , Filogenia , Resistência Física , Especificidade da Espécie
11.
J Exp Biol ; 221(Pt 1)2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29162638

RESUMO

The functional capabilities of flexible, propulsive appendages are directly influenced by their mechanical properties. The fins of fishes have undergone extraordinary evolutionary diversification in structure and function, which raises questions of how fin mechanics relate to swimming behavior. In the fish family Labridae, pectoral fin swimming behavior ranges from rowing to flapping. Rowers are more maneuverable than flappers, but flappers generate greater thrust at high speeds and achieve greater mechanical efficiency at all speeds. Interspecific differences in hydrodynamic capability are largely dependent on fin kinematics and deformation, and are expected to correlate with fin stiffness. Here we examine fin ray stiffness in two closely related species that employ divergent swimming behaviors, the flapping Gomphosus varius and the rowing Halichoeres bivittatus To determine the spatial distribution of flexural stiffness across the fin, we performed three-point bending tests at the center of the proximal, middle and distal regions of four equally spaced fin rays. Pectoral fin ray flexural stiffness ranged from 0.0001 to 1.5109 µN m2, and the proximal regions of G. varius fin rays were nearly an order of magnitude stiffer than those of H. bivittatus In both species, fin ray flexural stiffness decreased exponentially along the proximodistal span of fin rays, and flexural stiffness decreased along the fin chord from the leading to the trailing edge. Furthermore, the proportion of fin area occupied by fin rays was significantly greater in G. varius than in H. bivittatus, suggesting that the proportion of fin ray to fin area contributes to differences in fin mechanics.


Assuntos
Nadadeiras de Animais/fisiologia , Perciformes/fisiologia , Natação , Animais , Fenômenos Biomecânicos , Hidrodinâmica , Especificidade da Espécie
12.
J Fish Biol ; 93(5): 860-873, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30175499

RESUMO

Burrowing through the substrate is a common behaviour in many organisms, both invertebrate and vertebrate. Sand-diving, a burrowing behaviour in the fish family Labridae, consists of a quick and forceful headfirst plunge into the sediment followed by undulatory axial body movements until the fish is completely concealed beneath the surface. This study determined that sand-diving of the slippery dick wrasse Halichoeres bivittatus is composed of two distinct phases of undulatory axial body movements. In the first phase, body undulations occur at high frequencies and wave speeds and low amplitudes, while in the second phase, frequencies and wave speeds decrease while amplitude increases. Furthermore, this study examined several morphological features of sand-diving labrids, including narrow, elongated bodies and lengthened neural spines that overlap with the dorsal pterygiophores, that may be anatomical traits that contribute to burrowing ability. Finally, ancestral state reconstruction showed that sand-diving occurs exclusively in the upper half of the labrid phylogenetic tree with an evolutionary history indicating that sand-diving may have evolved once and then been lost three to five times or may have evolved independently at least three times in family Labridae.


Assuntos
Comportamento Animal/fisiologia , Perciformes/anatomia & histologia , Perciformes/classificação , Filogenia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Perciformes/metabolismo
13.
J Exp Biol ; 220(Pt 4): 652-666, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913600

RESUMO

Most species-rich lineages of aquatic organisms have undergone divergence between forms that feed from the substrate (benthic feeding) and forms that feed from the water column (pelagic feeding). Changes in trophic niche are frequently accompanied by changes in skull mechanics, and multiple fish lineages have evolved highly specialized biomechanical configurations that allow them to protrude their upper jaws toward the prey during feeding. Damselfishes (family Pomacentridae) are an example of a species-rich lineage with multiple trophic morphologies and feeding ecologies. We sought to determine whether bentho-pelagic divergence in the damselfishes is tightly coupled to changes in jaw protrusion ability. Using high-speed video recordings and kinematic analysis, we examined feeding performance in 10 species that include three examples of convergence on herbivory, three examples of convergence on omnivory and two examples of convergence on planktivory. We also utilized morphometrics to characterize the feeding morphology of an additional 40 species that represent all 29 damselfish genera. Comparative phylogenetic analyses were then used to examine the evolution of trophic morphology and biomechanical performance. We find that pelagic-feeding damselfishes (planktivores) are strongly differentiated from extensively benthic-feeding species (omnivores and herbivores) by their jaw protrusion ability, upper jaw morphology and the functional integration of upper jaw protrusion with lower jaw abduction. Most aspects of cranial form and function that separate these two ecological groups have evolved in correlation with each other and the evolution of the functional morphology of feeding in damselfishes has involved repeated convergence in form, function and ecology.


Assuntos
Evolução Biológica , Comportamento Alimentar , Perciformes/anatomia & histologia , Perciformes/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Fenômenos Biomecânicos , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/fisiologia , Perciformes/genética , Filogenia
14.
Mol Phylogenet Evol ; 94(Pt A): 397-409, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26408967

RESUMO

The triggerfishes (family Balistidae) and filefishes (family Monacanthidae) comprise a charismatic superfamily (Balistoidea) within the diverse order Tetraodontiformes. This group of largely marine fishes occupies an impressive ecological range across the world's oceans, and is well known for its locomotor and feeding diversity, unusual body shapes, small genome size, and ecological and economic importance. In order to investigate the evolutionary history of these important fish families, we used multiple phylogenetic methods to analyze molecular data from 86 species spanning the extant biodiversity of Balistidae and Monacanthidae. In addition to three gene regions that have been used extensively in phylogenetic analyses, we include sequence data for two mitochondrial regions, two nuclear markers, and the growth factor gene bmp4, which is involved with cranial development. Phylogenetic analyses strongly support the monophyly of the superfamily Balistoidea, the sister-family relationship of Balistidae and Monacanthidae, as well as three triggerfish and four filefish clades that are well resolved. A new classification for the Balistidae is proposed based on phylogenetic groups. Bayesian topology, as well as the timing of major cladogenesis events, is largely congruent with previous hypotheses of balistid phylogeny. However, we present a novel topology for major clades in the filefish family that illustrate the genera Aluterus and Stephanolepis are more closely related than previously posited. Molecular rates suggest a Miocene and Oligocene origin for the families Balistidae and Monacanthidae, respectively, and significant divergence of species in both families within the past 5 million years. A second key finding of this study is that, relative to the other protein-coding gene regions in our DNA supermatrix, bmp4 shows a rapid accumulation of both synonymous and non-synonymous substitutions, especially within the family Monacanthidae. Overall substitution patterns in bmp4 support the hypothesis of stabilizing selection during the evolutionary history of regulatory genes, with a small number of isolated examples of accelerated non-synonymous changes detected in our phylogeny.


Assuntos
Proteína Morfogenética Óssea 4/genética , Evolução Molecular , Especiação Genética , Tetraodontiformes/classificação , Tetraodontiformes/genética , Animais , Teorema de Bayes , Biodiversidade , Mitocôndrias/genética , Oceanos e Mares , Filogenia , Análise de Sequência de DNA
15.
BMC Ecol ; 16: 10, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26996922

RESUMO

BACKGROUND: At the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is determined by unknown proportions of environmental history and the synergy of Symbiodinium- and coral-specific properties. Symbiodinium live within host tissues overlaying the coral skeleton, which increases light availability through multiple light-scattering, forming one of the most efficient biological collectors of solar radiation. Light-transport in the upper ~200 µm layer of corals skeletons (measured as 'microscopic' reduced-scattering coefficient, µ'(S,m)), has been identified as a determinant of excess light increase during bleaching and is therefore a potential determinant of the differential rate and severity of bleaching response among coral species. RESULTS: Here we experimentally demonstrate (in ten coral species) that, under thermal stress alone or combined thermal and light stress, low-µ'(S,m) corals bleach at higher rate and severity than high-µ'(S,m) corals and the Symbiodinium associated with low-µ'(S,m) corals experience twice the decrease in photochemical efficiency. We further modelled the light absorbed by Symbiodinium due to skeletal-scattering and show that the estimated skeleton-dependent light absorbed by Symbiodinium (per unit of photosynthetic pigment) and the temporal rate of increase in absorbed light during bleaching are several fold higher in low-µ'(S,m) corals. CONCLUSIONS: While symbionts associated with low-[Formula: see text] corals receive less total light from the skeleton, they experience a higher rate of light increase once bleaching is initiated and absorbing bodies are lost; further precipitating the bleaching response. Because microscopic skeletal light-scattering is a robust predictor of light-dependent bleaching among the corals assessed here, this work establishes µ'(S,m) as one of the key determinants of differential bleaching response.


Assuntos
Antozoários/fisiologia , Antozoários/efeitos da radiação , Recifes de Corais , Dinoflagellida/fisiologia , Animais , Luz , Fotodegradação , Espalhamento de Radiação , Simbiose , Temperatura
16.
BMC Bioinformatics ; 14: 158, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23668630

RESUMO

BACKGROUND: Scientists rarely reuse expert knowledge of phylogeny, in spite of years of effort to assemble a great "Tree of Life" (ToL). A notable exception involves the use of Phylomatic, which provides tools to generate custom phylogenies from a large, pre-computed, expert phylogeny of plant taxa. This suggests great potential for a more generalized system that, starting with a query consisting of a list of any known species, would rectify non-standard names, identify expert phylogenies containing the implicated taxa, prune away unneeded parts, and supply branch lengths and annotations, resulting in a custom phylogeny suited to the user's needs. Such a system could become a sustainable community resource if implemented as a distributed system of loosely coupled parts that interact through clearly defined interfaces. RESULTS: With the aim of building such a "phylotastic" system, the NESCent Hackathons, Interoperability, Phylogenies (HIP) working group recruited 2 dozen scientist-programmers to a weeklong programming hackathon in June 2012. During the hackathon (and a three-month follow-up period), 5 teams produced designs, implementations, documentation, presentations, and tests including: (1) a generalized scheme for integrating components; (2) proof-of-concept pruners and controllers; (3) a meta-API for taxonomic name resolution services; (4) a system for storing, finding, and retrieving phylogenies using semantic web technologies for data exchange, storage, and querying; (5) an innovative new service, DateLife.org, which synthesizes pre-computed, time-calibrated phylogenies to assign ages to nodes; and (6) demonstration projects. These outcomes are accessible via a public code repository (GitHub.com), a website (http://www.phylotastic.org), and a server image. CONCLUSIONS: Approximately 9 person-months of effort (centered on a software development hackathon) resulted in the design and implementation of proof-of-concept software for 4 core phylotastic components, 3 controllers, and 3 end-user demonstration tools. While these products have substantial limitations, they suggest considerable potential for a distributed system that makes phylogenetic knowledge readily accessible in computable form. Widespread use of phylotastic systems will create an electronic marketplace for sharing phylogenetic knowledge that will spur innovation in other areas of the ToL enterprise, such as annotation of sources and methods and third-party methods of quality assessment.


Assuntos
Filogenia , Software , Internet
17.
Am J Physiol Regul Integr Comp Physiol ; 304(8): R621-7, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23427081

RESUMO

Rhythmic patterns of compression and reinflation of the thin-walled hollow tubes of the insect tracheal system have been observed in a number of insects. These movements may be important for facilitating the transport and exchange of respiratory gases, but observing and characterizing the dynamics of internal physiological systems within live insects can be challenging due to their size and exoskeleton. Using synchrotron X-ray phase-contrast imaging, we observed dynamical behavior in the tracheal system of the beetle, Odontotaenius disjunctus. Similar to observations of tracheal compression in other insects, specific regions of tracheae in the thorax of O. disjunctus exhibit rhythmic collapse and reinflation. During tracheal compression, the opposing sides of a tracheal tube converge, causing the effective diameter of the tube to decrease. However, a unique characteristic of tracheal compression in this species is that certain tracheae collapse and reinflate with a wavelike motion. In the dorsal cephalic tracheae, compression begins anteriorly and continues until the tube is uniformly flattened; reinflation takes place in the reverse direction, starting with the posterior end of the tube and continuing until the tube is fully reinflated. We report the detailed kinematics of this pattern as well as additional observations that show tracheal compression coordinated with spiracle opening and closing. These findings suggest that tracheal compression may function to drive flow within the body, facilitating internal mixing of respiratory gases and ventilation of distal regions of the tracheal system.


Assuntos
Besouros/fisiologia , Traqueia/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos/fisiologia , Convecção , Difusão , Modelos Biológicos , Contração Muscular/fisiologia , Radiografia , Traqueia/anatomia & histologia , Traqueia/diagnóstico por imagem
19.
Zootaxa ; 3640: 88-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26000407

RESUMO

A new species of the fish family Labridae, Suezichthys rosenblatti, is described from specimens collected at Isla San Felix, Isla Juan Fernandez and Isla San Ambrosio, off the coast of Chile. Suezichthys rosenblatti is distinct in having a combination of 11 dorsal fin soft rays and 11 anal fin soft rays. It falls in the group of species that has 1½ scale rows above the lateral line and lack a scaly sheath at the base of the dorsal and anal fins (S. aylingi Russell, S. caudovittatus Russell, S. gracilis (Steindachner & Döderlein) and S. soelae Russell). Unlike other members of this group, S. rosenblatti has haemal arches on vertebrae 10-11 (versus haemal arch only on vertebra 10). The monotypic Nelabrichthys ornatus (Carmichael) is now included in the genus Suezichthys and a revised generic description and key to species of Suezichthys is provided. The occurrence of S. rosenblatti in the south-eastern Pacific and S. ornatus in the south-western Indian Ocean and south Atlantic Ocean represent major range extensions of the genus Suezichthys.


Assuntos
Perciformes/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Animais , Tamanho Corporal , Oceano Índico , Masculino , Perciformes/anatomia & histologia , Perciformes/crescimento & desenvolvimento
20.
Evolution ; 77(9): 2000-2014, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37345732

RESUMO

The upper and lower jaws of some wrasses (Eupercaria: Labridae) possess teeth that have been coalesced into a strong durable beak that they use to graze on hard coral skeletons, hard-shelled prey, and algae, allowing many of these species to function as important ecosystem engineers in their respective marine habitats. While the ecological impact of the beak is well understood, questions remain about its evolutionary history and the effects of this innovation on the downstream patterns of morphological evolution. Here we analyze 3D cranial shape data in a phylogenetic comparative framework and use paleoclimate modeling to reconstruct the evolution of the labrid beak across 205 species. We find that wrasses evolved beaks three times independently, once within odacines and twice within parrotfishes in the Pacific and Atlantic Oceans. We find an increase in the rate of shape evolution in the Scarus+Chlorurus+Hipposcarus (SCH) clade of parrotfishes likely driven by the evolution of the intramandibular joint. Paleoclimate modeling shows that the SCH clade of parrotfishes rapidly morphologically diversified during the middle Miocene. We hypothesize that possession of a beak in the SCH clade coupled with favorable environmental conditions allowed these species to rapidly morphologically diversify.


Assuntos
Bico , Perciformes , Animais , Filogenia , Ecossistema , Peixes/anatomia & histologia , Perciformes/anatomia & histologia , Evolução Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA