Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 514(7522): 339-42, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25296250

RESUMO

Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel about 10(-4) solar masses of material at velocities exceeding 1,000 kilometres per second. However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds or binary interaction with the nova envelope. Classical novae are now routinely detected at gigaelectronvolt γ-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the γ-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion. At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of γ-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are γ-ray emitters.

2.
Cochrane Database Syst Rev ; 4: CD007286, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32343399

RESUMO

BACKGROUND: This is an updated version of the Cochrane Review previously published in 2018. The incidence of seizures following supratentorial craniotomy for non-traumatic pathology has been estimated to be between 15% to 20%; however, the risk of experiencing a seizure appears to vary from 3% to 92% over a five-year period. Postoperative seizures can precipitate the development of epilepsy; seizures are most likely to occur within the first month of cranial surgery. The use of antiepileptic drugs (AEDs) administered pre- or postoperatively to prevent seizures following cranial surgery has been investigated in a number of randomised controlled trials (RCTs). OBJECTIVES: To determine the efficacy and safety of AEDs when used prophylactically in people undergoing craniotomy and to examine which AEDs are most effective. SEARCH METHODS: For the latest update we searched the following databases on 29 September 2019: Cochrane Epilepsy Group Specialized Register, CENTRAL, MEDLINE, ClinicalTrials.gov, and the WHO International Clinical Trials Registry Platform (ICTRP). We did not apply any language restrictions. SELECTION CRITERIA: We included RCTs of people with no history of epilepsy who were undergoing craniotomy for either therapeutic or diagnostic reasons. We included trials with adequate randomisation methods and concealment; these could either be blinded or unblinded parallel trials. We did not stipulate a minimum treatment period, and we included trials using active drugs or placebo as a control group. DATA COLLECTION AND ANALYSIS: Three review authors (JW, JG, YD) independently selected trials for inclusion, extracted data and assessed risk of bias. We resolved any disagreements through discussion. Outcomes investigated included the number of participants experiencing seizures (early (occurring within first week following craniotomy), and late (occurring after first week following craniotomy)), the number of deaths and the number of people experiencing disability and adverse effects. Due to the heterogeneous nature of the trials, we did not combine data from the included trials in a meta-analysis; we presented the findings of the review in narrative format. Visual comparisons of outcomes are presented in forest plots. MAIN RESULTS: We included 10 RCTs (N = 1815), which were published between 1983 and 2015. Three trials compared a single AED (phenytoin) with placebo or no treatment. One, three-armed trial compared two AEDs (phenytoin, carbamazepine) with no treatment. A second three-armed trial compared phenytoin, phenobarbital with no treatment. Of these five trials comparing AEDs with placebo or no treatment, two trials reported a statistically significant advantage for AED treatment compared to controls for early seizure occurrence; all other comparisons showed no clear or statistically significant differences between AEDs and control treatment. None of the trials that were head-to-head comparisons of AEDs (phenytoin versus sodium valproate, phenytoin versus phenobarbital, levetiracetam versus phenytoin, zonisamide versus phenobarbital) reported any statistically significant differences between treatments for either early or late seizure occurrence. Only five trials reported incidences of death. One trial reported statistically significantly fewer deaths in the carbamazepine and no-treatment groups compared with the phenytoin group after 24 months of treatment, but not after six months of treatment. Incidences of adverse effects of treatment were poorly reported; however, three trials did show that significantly more adverse events occurred on phenytoin compared to valproate, placebo, or no treatment. No trials reported any results relating to functional outcomes such as disability. We considered the evidence to be of low certainty for all reported outcomes due to methodological issues and variability of comparisons made in the trials. AUTHORS' CONCLUSIONS: There is limited, low-certainly evidence to suggest that AED treatment administered prophylactically is either effective or not effective in the prevention of postcraniotomy (early or late) seizures. The current evidence base is limited due to the different methodologies employed in the trials and inconsistencies in the reporting of outcomes including deaths and adverse events. Further evidence from good-quality, contemporary trials is required in order to assess the clinical effectiveness of prophylactic AED treatment compared to placebo or no treatment, or other AEDs in preventing postcraniotomy seizures in this select group of patients.


Assuntos
Anticonvulsivantes/uso terapêutico , Craniotomia/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Convulsões/prevenção & controle , Anticonvulsivantes/efeitos adversos , Carbamazepina/uso terapêutico , Humanos , Isoxazóis/uso terapêutico , Levetiracetam/uso terapêutico , Fenobarbital/uso terapêutico , Fenitoína/uso terapêutico , Piracetam/análogos & derivados , Piracetam/uso terapêutico , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/mortalidade , Ensaios Clínicos Controlados Aleatórios como Assunto , Convulsões/etiologia , Convulsões/mortalidade , Ácido Valproico/uso terapêutico , Zonisamida/uso terapêutico
3.
Cochrane Database Syst Rev ; 6: CD010541, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31237346

RESUMO

BACKGROUND: This is an updated version of the original Cochrane review, published in 2015.Focal epilepsies are caused by a malfunction of nerve cells localised in one part of one cerebral hemisphere. In studies, estimates of the number of individuals with focal epilepsy who do not become seizure-free despite optimal drug therapy vary between at least 20% and up to 70%. If the epileptogenic zone can be located, surgical resection offers the chance of a cure with a corresponding increase in quality of life. OBJECTIVES: The primary objective is to assess the overall outcome of epilepsy surgery according to evidence from randomised controlled trials.Secondary objectives are to assess the overall outcome of epilepsy surgery according to non-randomised evidence, and to identify the factors that correlate with remission of seizures postoperatively. SEARCH METHODS: For the latest update, we searched the following databases on 11 March 2019: Cochrane Register of Studies (CRS Web), which includes the Cochrane Epilepsy Group Specialized Register and the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid, 1946 to March 08, 2019), ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). SELECTION CRITERIA: Eligible studies were randomised controlled trials (RCTs) that included at least 30 participants in a well-defined population (age, sex, seizure type/frequency, duration of epilepsy, aetiology, magnetic resonance imaging (MRI) diagnosis, surgical findings), with an MRI performed in at least 90% of cases and an expected duration of follow-up of at least one year, and reporting an outcome related to postoperative seizure control. Cohort studies or case series were included in the previous version of this review. DATA COLLECTION AND ANALYSIS: Three groups of two review authors independently screened all references for eligibility, assessed study quality and risk of bias, and extracted data. Outcomes were proportions of participants achieving a good outcome according to the presence or absence of each prognostic factor of interest. We intended to combine data with risk ratios (RRs) and 95% confidence intervals (95% CIs). MAIN RESULTS: We identified 182 studies with a total of 16,855 included participants investigating outcomes of surgery for epilepsy. Nine studies were RCTs (including two that randomised participants to surgery or medical treatment (99 participants included in the two trials received medical treatment)). Risk of bias in these RCTs was unclear or high. Most of the remaining 173 non-randomised studies followed a retrospective design. We assessed study quality using the Effective Public Health Practice Project (EPHPP) tool and determined that most studies provided moderate or weak evidence. For 29 studies reporting multivariate analyses, we used the Quality in Prognostic Studies (QUIPS) tool and determined that very few studies were at low risk of bias across domains.In terms of freedom from seizures, two RCTs found surgery (n = 97) to be superior to medical treatment (n = 99); four found no statistically significant differences between anterior temporal lobectomy (ATL) with or without corpus callosotomy (n = 60), between subtemporal or transsylvian approach to selective amygdalohippocampectomy (SAH) (n = 47); between ATL, SAH and parahippocampectomy (n = 43) or between 2.5 cm and 3.5 cm ATL resection (n = 207). One RCT found total hippocampectomy to be superior to partial hippocampectomy (n = 70) and one found ATL to be superior to stereotactic radiosurgery (n = 58); and another provided data to show that for Lennox-Gastaut syndrome, no significant differences in seizure outcomes were evident between those treated with resection of the epileptogenic zone and those treated with resection of the epileptogenic zone plus corpus callosotomy (n = 43). We judged evidence from the nine RCTs to be of moderate to very low quality due to lack of information reported about the randomised trial design and the restricted study populations.Of the 16,756 participants included in this review who underwent a surgical procedure, 10,696 (64%) achieved a good outcome from surgery; this ranged across studies from 13.5% to 92.5%. Overall, we found the quality of data in relation to recording of adverse events to be very poor.In total, 120 studies examined between one and eight prognostic factors in univariate analysis. We found the following prognostic factors to be associated with a better post-surgical seizure outcome: abnormal pre-operative MRI, no use of intracranial monitoring, complete surgical resection, presence of mesial temporal sclerosis, concordance of pre-operative MRI and electroencephalography, history of febrile seizures, absence of focal cortical dysplasia/malformation of cortical development, presence of tumour, right-sided resection, and presence of unilateral interictal spikes. We found no evidence that history of head injury, presence of encephalomalacia, presence of vascular malformation, and presence of postoperative discharges were prognostic factors of outcome.Twenty-nine studies reported multi-variable models of prognostic factors, and showed that the direction of association of factors with outcomes was generally the same as that found in univariate analyses.We observed variability in many of our analyses, likely due to small study sizes with unbalanced group sizes and variation in the definition of seizure outcome, the definition of prognostic factors, and the influence of the site of surgery AUTHORS' CONCLUSIONS: Study design issues and limited information presented in the included studies mean that our results provide limited evidence to aid patient selection for surgery and prediction of likely surgical outcomes. Future research should be of high quality, follow a prospective design, be appropriately powered, and focus on specific issues related to diagnostic tools, the site-specific surgical approach, and other issues such as extent of resection. Researchers should investigate prognostic factors related to the outcome of surgery via multi-variable statistical regression modelling, where variables are selected for modelling according to clinical relevance, and all numerical results of the prognostic models are fully reported. Journal editors should not accept papers for which study authors did not record adverse events from a medical intervention. Researchers have achieved improvements in cancer care over the past three to four decades by answering well-defined questions through the conduct of focused RCTs in a step-wise fashion. The same approach to surgery for epilepsy is required.


Assuntos
Epilepsias Parciais/cirurgia , Adolescente , Adulto , Análise de Variância , Anticonvulsivantes/uso terapêutico , Criança , Epilepsias Parciais/tratamento farmacológico , Feminino , Hipocampo/cirurgia , Humanos , Masculino , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Resultado do Tratamento
4.
Cochrane Database Syst Rev ; 6: CD001031, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29952431

RESUMO

BACKGROUND: This is an updated version of the original Cochrane Review published in Issue 11, 2006 of the Cochrane Database of Systematic Reviews.Epilepsy is a common neurological condition in which abnormal electrical discharges from the brain cause recurrent unprovoked seizures. It is believed that with effective drug treatment up to 70% of individuals with active epilepsy have the potential to become seizure-free, and to go into long-term remission shortly after starting drug therapy with a single antiepileptic drug (AED) in monotherapy.The correct choice of first-line AED for individuals with newly diagnosed seizures is of great importance. It is important that the choice of AEDs for an individual is made using the highest quality evidence regarding the potential benefits and harms of the various treatments.Carbamazepine or lamotrigine are recommended as first-line treatments for new onset focal seizures and as a first- or second-line treatment for generalised tonic-clonic seizures. Performing a synthesis of the evidence from existing trials will increase the precision of the results for outcomes relating to efficacy and tolerability and may assist in informing a choice between the two drugs. OBJECTIVES: To review the time to treatment failure, remission and first seizure with lamotrigine compared to carbamazepine when used as monotherapy in people with focal onset seizures (simple or complex focal and secondarily generalised) or generalised onset tonic-clonic seizures (with or without other generalised seizure types). SEARCH METHODS: We conducted the first searches for this review in 1997. For the most recent update, we searched the Cochrane Epilepsy Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL) via the Cochrane Register of Studies Online (CRSO), MEDLINE, Clinical Trials.gov and the WHO International Clinical Trials Registry Platform on 26 February 2018, without language restrictions SELECTION CRITERIA: Randomised controlled trials comparing monotherapy with either carbamazepine or lamotrigine in children or adults with focal onset seizures or generalised onset tonic-clonic seizures DATA COLLECTION AND ANALYSIS: This was an individual participant data (IPD) review. Our primary outcome was time to treatment failure and our secondary outcomes were time to first seizure post randomisation, time to six-month, 12-month and 24-month remission, and incidence of adverse events. We used Cox proportional hazards regression models to obtain trial-specific estimates of hazard ratios (HRs) with 95% confidence intervals (CIs), using the generic inverse variance method to obtain the overall pooled HR and 95% CI. MAIN RESULTS: We included 14 trials in this review. Individual participant data were available for 2572 participants out of 3787 eligible individuals from nine out of 14 trials: 68% of the potential data. For remission outcomes, a HR of less than one indicated an advantage for carbamazepine; and for first seizure and treatment failure outcomes, a HR of less than one indicated an advantage for lamotrigine.The main overall results were: time to treatment failure for any reason related to treatment (pooled HR adjusted for seizure type: 0.71, 95% CI 0.62 to 0.82, moderate-quality evidence), time to treatment failure due to adverse events (pooled HR adjusted for seizure type: 0.55 (95% CI 0.45 to 0.66, moderate-quality evidence), time to treatment failure due to lack of efficacy (pooled HR for all participants: 1.03 (95% CI 0.75 to 1.41), moderate-quality evidence) showing a significant advantage for lamotrigine compared to carbamazepine in terms of treatment failure for any reason related to treatment and treatment failure due to adverse events, but no different between drugs for treatment failure due to lack of efficacy.Time to first seizure (pooled HR adjusted for seizure type: 1.26, 95% CI 1.12 to 1.41, high-quality evidence) and time to six-month remission (pooled HR adjusted for seizure type: 0.86, 95% CI 0.76 to 0.97, high-quality evidence), showed a significant advantage for carbamazepine compared to lamotrigine for first seizure and six-month remission. We found no difference between the drugs for time to 12-month remission (pooled HR for all participants 0.91, 95% CI 0.77 to 1.07, high-quality evidence) or time to 24-month remission (HR for all participants 1.00, 95% CI 0.80 to 1.25, high-quality evidence), however only two trials followed up participants for more than one year so evidence is limited.The results of this review are applicable mainly to individuals with focal onset seizures; 88% of included individuals experienced seizures of this type at baseline. Up to 50% of the limited number of individuals classified as experiencing generalised onset seizures at baseline may have had their seizure type misclassified, therefore we recommend caution when interpreting the results of this review for individuals with generalised onset seizures.The most commonly reported adverse events for both of the drugs across all of the included trials were dizziness, fatigue, gastrointestinal disturbances, headache and skin problems. The rate of adverse events was similar across the two drugs.The methodological quality of the included trials was generally good, however there is some evidence that the design choice of masked or open-label treatment may have influenced the treatment failure and withdrawal rates of the trials. Hence, we judged the quality of the evidence for the primary outcome of treatment failure to be moderate for individuals with focal onset seizures and low for individuals with generalised onset seizures. For efficacy outcomes (first seizure, remission), we judged the quality of evidence to be high for individuals with focal onset seizures and moderate for individuals with generalised onset seizures. AUTHORS' CONCLUSIONS: Moderate quality evidence indicates that treatment failure for any reason related to treatment or due to adverse events occurs significantly earlier on carbamazepine than lamotrigine, but the results for time to first seizure suggested that carbamazepine may be superior in terms of seizure control. The choice between these first-line treatments must be made with careful consideration. We recommend that future trials should be designed to the highest quality possible with consideration of masking, choice of population, classification of seizure type, duration of follow-up, choice of outcomes and analysis, and presentation of results.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbamazepina/uso terapêutico , Epilepsias Parciais/tratamento farmacológico , Epilepsia Tônico-Clônica/tratamento farmacológico , Triazinas/uso terapêutico , Adulto , Anticonvulsivantes/efeitos adversos , Carbamazepina/efeitos adversos , Criança , Epilepsia Generalizada/tratamento farmacológico , Humanos , Lamotrigina , Ensaios Clínicos Controlados Aleatórios como Assunto , Recidiva , Fatores de Tempo , Falha de Tratamento , Suspensão de Tratamento
5.
Cochrane Database Syst Rev ; 8: CD001769, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30091458

RESUMO

BACKGROUND: Epilepsy is a common neurological condition in which abnormal electrical discharges from the brain cause recurrent unprovoked seizures. It is believed that with effective drug treatment up to 70% of individuals with active epilepsy have the potential to become seizure-free, and to go into long-term remission shortly after starting drug therapy with a single antiepileptic drug in monotherapy.Worldwide, sodium valproate and phenytoin are commonly used antiepileptic drugs for monotherapy treatment. It is generally believed that phenytoin is more effective for focal onset seizures, and that sodium pvalproate is more effective for generalised onset tonic-clonic seizures (with or without other generalised seizure types). This review is one in a series of Cochrane Reviews investigating pair-wise monotherapy comparisons. This is the latest updated version of the review first published in 2001, and updated in 2013 and 2016. OBJECTIVES: To review the time to treatment failure, remission and first seizure of sodium valproate compared to phenytoin when used as monotherapy in people with focal onset seizures or generalised tonic-clonic seizures (with or without other generalised seizure types). SEARCH METHODS: We searched the Cochrane Epilepsy Group's Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform ICTRP on 19 February 2018. We handsearched relevant journals, contacted pharmaceutical companies, original trial investigators and experts in the field. SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing monotherapy with either sodium valproate or phenytoin in children or adults with focal onset seizures or generalised onset tonic-clonic seizures DATA COLLECTION AND ANALYSIS: This was an individual participant data (IPD) review. Our primary outcome was time to treatment failure and our secondary outcomes were time to first seizure post-randomisation, time to six-month, and 12-month remission, and incidence of adverse events. We used Cox proportional hazards regression models to obtain trial-specific estimates of hazard ratios (HRs) with 95% confidence intervals (CIs), using the generic inverse variance method to obtain the overall pooled HR and 95% CI. MAIN RESULTS: We included 11 trials in this review and IPD were available for 669 individuals out of 1119 eligible individuals from five out of 11 trials, 60% of the potential data. Results apply to focal onset seizures (simple, complex and secondary generalised tonic-clonic seizures), and generalised tonic-clonic seizures, but not other generalised seizure types (absence or myoclonus seizure types). For remission outcomes, a HR of less than 1 indicates an advantage for phenytoin, and for first seizure and treatment failure outcomes a HR of less than 1 indicates an advantage for sodium valproate.The main overall results were: time to treatment failure for any reason related to treatment (pooled HR adjusted for seizure type 0.88, 95% CI 0.61 to 1.27; 5 studies; 528 participants; moderate-quality evidence), time to treatment failure due to adverse events (pooled HR adjusted for seizure type 0.77, 95% CI 0.44 to 1.37; 4 studies; 418 participants; moderate-quality evidence), time to treatment failure due to lack of efficacy (pooled HR for all participants 1.16 (95% CI 0.71 to 1.89; 5 studies; 451 participants; moderate-quality evidence). These results suggest that treatment failure for any reason related to treatment and treatment failure due to adverse events may occur earlier on phenytoin compared to sodium valproate, while treatment failure due to lack of efficacy may occur earlier on sodium valproate than phenytoin; however none of these results were statistically significant.Results for time to first seizure (pooled HR adjusted for seizure type 1.08, 95% CI 0.88 to 1.33; 5 studies; 639 participants; low-quality evidence) suggest that first seizure recurrence may occur slightly earlier on sodium valproate compared to phenytoin. There were no clear differences between drugs in terms of time to 12-month remission (pooled HR adjusted for seizure type 1.02, 95% CI 0.81 to 1.28; 4 studies; 514 participants; moderate-quality evidence) and time to six-month remission (pooled HR adjusted for seizure type 1.05, 95% CI 0.86 to 1.27; 5 studies; 639 participants; moderate-quality evidence).Limited information was available regarding adverse events in the trials and we could not make comparisons between the rates of adverse events on sodium valproate and phenytoin. Some adverse events reported with both drugs were drowsiness, rash, dizziness, nausea and gastrointestinal problems. Weight gain was also reported with sodium valproate and gingival hypertrophy/hyperplasia was reported on phenytoin.The methodological quality of the included trials was generally good, however four out of the five trials providing IPD for analysis were of an open-label design, therefore all results were at risk of detection bias. There was also evidence that misclassification of seizure type may have confounded the results of this review, particularly for the outcome 'time to first seizure' and heterogeneity was present in analysis of treatment failure outcomes which could not be explained by subgroup analysis by epilepsy type or by sensitivity analysis for misclassification of seizure type. Therefore, for treatment failure outcomes we judged the quality of the evidence to be moderate to low, for 'time to first seizure' we judged the quality of the evidence to be low, and for remission outcomes we judged the quality of the evidence to be moderate. AUTHORS' CONCLUSIONS: We have not found evidence that a significant difference exists between valproate and phenytoin for any of the outcomes examined in this review. However detection bias, classification bias and heterogeneity may have impacted on the results of this review. We did not find any outright evidence to support or refute current treatment policies. We recommend that future trials be designed to the highest quality possible with consideration of masking, choice of population, classification of seizure type, duration of follow-up, choice of outcomes and analysis, and presentation of results.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsias Parciais/tratamento farmacológico , Epilepsia Generalizada/tratamento farmacológico , Fenitoína/uso terapêutico , Convulsões/tratamento farmacológico , Ácido Valproico/uso terapêutico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
6.
Cochrane Database Syst Rev ; 10: CD001415, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30357813

RESUMO

BACKGROUND: This is an updated version of the Cochrane Review previously published in 2013.Most people with epilepsy have a good prognosis and their seizures are well controlled by a single antiepileptic drug, but up to 30% develop drug-resistant epilepsy, especially those with focal seizures. In this review, we summarised the evidence from randomised controlled trials (RCTs) of gabapentin, when used as an add-on treatment for drug-resistant focal epilepsy. OBJECTIVES: To evaluate the efficacy and tolerability of gabapentin when used as an add-on treatment for people with drug-resistant focal epilepsy. SEARCH METHODS: For the latest update, we searched the Cochrane Register of Studies (CRS Web, 20 March 2018), which includes the Cochrane Epilepsy Group's Specialized Register and the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid, 1946 to 20 March 2018), ClinicalTrials.gov (20 March 2018) and the World Health Organization International Clinical Trials Registry Platform (ICTRP, 20 March 2018). We imposed no language restrictions. SELECTION CRITERIA: Randomised, placebo-controlled, double-blind, add-on trials of gabapentin in people with drug-resistant focal epilepsy. We also included trials using an active drug control group or comparing different doses of gabapentin. DATA COLLECTION AND ANALYSIS: For this update, two review authors independently selected trials for inclusion and extracted the relevant data. We assessed the following outcomes: seizure frequency, seizure freedom, treatment withdrawal (any reason) and adverse effects. Primary analyses were intention-to-treat. We also undertook sensitivity best-case and worst-case analyses. We estimated summary risk ratios (RR) for each outcome and evaluated dose-response in regression models. MAIN RESULTS: We included 12 trials representing 2607 randomised participants. We combined data from six trials in meta-analyses of 1206 randomised participants. The overall RR for reduction in seizure frequency of 50% or more compared to placebo was 1.89 (95% confidence interval (CI) 1.40 to 2.55; 6 trials, 1206 participants; moderate-quality evidence). Dose regression analysis (for trials in adults) showed increasing efficacy with increasing dose, with 25.3% (19.3 to 32.3) of people responding to gabapentin 1800 mg compared to 9.7% on placebo, a 15.5% increase in response rate (8.5 to 22.5). The RR for treatment withdrawal compared to placebo was 1.05 (95% CI 0.74 to 1.49; 6 trials, 1206 participants; moderate-quality evidence). Adverse effects were significantly associated with gabapentin compared to placebo. RRs were as follows: ataxia 2.01 (99% CI 0.98 to 4.11; 3 studies, 787 participants; low-quality evidence), dizziness 2.43 (99% CI 1.44 to 4.12; 6 studies, 1206 participants; moderate-quality evidence), fatigue 1.95 (99% CI 0.99 to 3.82; 5 studies, 1161 participants; low-quality evidence) and somnolence 1.93 (99% CI 1.22 to 3.06; 6 studies, 1206 participants; moderate-quality evidence). There were no significant differences for the adverse effects of headache (RR 0.79, 99% CI 0.46 to 1.35; 6 studies, 1206 participants; moderate-quality evidence) or nausea (RR 0.95, 99% CI 0.52 to 1.73; 4 trials, 1034 participants; moderate-quality evidence). Overall, the studies were rated at low to unclear risk of bias due to information on each risk of bias domain not being available. We judged the overall quality of evidence (using the GRADE approach) as low to moderate due to potential attrition bias resulting from missing outcome data and imprecise results with wide confidence intervals. AUTHORS' CONCLUSIONS: Gabapentin has efficacy as an add-on treatment in people with drug-resistant focal epilepsy. However, the trials reviewed were of relatively short duration and provide no evidence for the long-term efficacy of gabapentin beyond a three-month period. The results cannot be extrapolated to monotherapy or to people with other epilepsy types.


Assuntos
Anticonvulsivantes/uso terapêutico , Ácidos Cicloexanocarboxílicos/uso terapêutico , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsias Parciais/tratamento farmacológico , Gabapentina/uso terapêutico , Ácido gama-Aminobutírico/uso terapêutico , Adulto , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/efeitos adversos , Criança , Quimioterapia Combinada/métodos , Gabapentina/administração & dosagem , Gabapentina/efeitos adversos , Humanos , Análise de Intenção de Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Cochrane Database Syst Rev ; 5: CD007286, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29791030

RESUMO

BACKGROUND: This is an updated version of the Cochrane Review previously published in Issue 3, 2015.The incidence of seizures following supratentorial craniotomy for non-traumatic pathology has been estimated to be between 15% to 20%; however, the risk of experiencing a seizure appears to vary from 3% to 92% over a five-year period. Postoperative seizures can precipitate the development of epilepsy; seizures are most likely to occur within the first month of cranial surgery. The use of antiepileptic drugs (AEDs) administered pre- or postoperatively to prevent seizures following cranial surgery has been investigated in a number of randomised controlled trials (RCTs). OBJECTIVES: To determine the efficacy and safety of AEDs when used prophylactically in people undergoing craniotomy and to examine which AEDs are most effective. SEARCH METHODS: For the latest update we searched the following databases on 26 June 2017: Cochrane Epilepsy Group Specialized Register, the CENTRAL, MEDLINE, ClinicalTrials.gov, and the WHO International Clinical Trials Registry Platform (ICTRP). We did not apply any language restrictions. SELECTION CRITERIA: We included RCTs of people with no history of epilepsy who were undergoing craniotomy for either therapeutic or diagnostic reasons. We included trials with adequate randomisation methods and concealment; these could either be blinded or unblinded parallel trials. We did not stipulate a minimum treatment period, and we included trials using active drugs or placebo as a control group. DATA COLLECTION AND ANALYSIS: Three review authors (JW, JG, YD) independently selected trials for inclusion and performed data extraction and risk of bias assessments. We resolved any disagreements through discussion. Outcomes investigated included the number of participants experiencing seizures (early (occurring within first week following craniotomy), and late (occurring after first week following craniotomy)), the number of deaths and the number of people experiencing disability and adverse effects. Due to the heterogeneous nature of the trials, we did not combine data from the included trials in a meta-analysis; we presented the findings of the review in narrative format. Visual comparisons of outcomes are presented in forest plots. MAIN RESULTS: We included 10 RCTs (N = 1815), which were published between 1983 and 2015. Three trials compared a single AED (phenytoin) with placebo or no treatment. One three-armed trial compared two AEDs (phenytoin, carbamazepine) with no treatment. A second three-armed trial compared phenytoin, phenobarbital with no treatment. Of these five trials comparing AEDs with placebo or no treatment, two trials reported a statistically significant advantage for AED treatment compared to controls for early seizure occurrence; all other comparisons showed no clear or statistically significant differences between AEDs and control treatment. None of the trials that were head-to-head comparisons of AEDs (phenytoin versus sodium valproate, phenytoin versus phenobarbital, levetiracetam versus phenytoin, zonisamide versus phenobarbital) reported any statistically significant differences between treatments for either early or late seizure occurrence.Incidences of death were reported in only five trials. One trial reported statistically significantly fewer deaths in the carbamazepine and no-treatment groups compared with the phenytoin group after 24 months of treatment, but not after six months of treatment. Incidences of adverse effects of treatment were poorly reported; however, three trials did show that significantly more adverse events occurred on phenytoin compared to valproate, placebo, or no treatment. No trials reported any results relating to functional outcomes such as disability.We considered the evidence to be of low quality for all reported outcomes due to methodological issues and variability of comparisons made in the trials. AUTHORS' CONCLUSIONS: There is limited, low-quality evidence to suggest that AED treatment administered prophylactically is either effective or not effective in the prevention of postcraniotomy (early or late) seizures. The current evidence base is limited due to the different methodologies employed in the trials and inconsistencies in the reporting of outcomes including deaths and adverse events. Further evidence from good-quality, contemporary trials is required in order to assess the clinical effectiveness of prophylactic AED treatment compared to placebo or no treatment, or other AEDs in preventing postcraniotomy seizures in this select group of patients.


Assuntos
Anticonvulsivantes/uso terapêutico , Craniotomia/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Convulsões/prevenção & controle , Anticonvulsivantes/efeitos adversos , Carbamazepina/uso terapêutico , Humanos , Isoxazóis/uso terapêutico , Levetiracetam , Fenobarbital/uso terapêutico , Fenitoína/uso terapêutico , Piracetam/análogos & derivados , Piracetam/uso terapêutico , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/mortalidade , Ensaios Clínicos Controlados Aleatórios como Assunto , Convulsões/etiologia , Convulsões/mortalidade , Ácido Valproico/uso terapêutico , Zonisamida
8.
Cochrane Database Syst Rev ; 2: CD001911, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28240353

RESUMO

BACKGROUND: This is an updated version of the original Cochrane Review published in Issue 2, 2002 and its subsequent updates in 2010 and 2015.Epilepsy is a common neurological condition in which recurrent, unprovoked seizures are caused by abnormal electrical discharges from the brain. It is believed that with effective drug treatment, up to 70% of individuals with active epilepsy have the potential to become seizure-free and go into long-term remission shortly after starting drug therapy with a single antiepileptic drug in monotherapy.Worldwide, carbamazepine and phenytoin are commonly-used broad spectrum antiepileptic drugs, suitable for most epileptic seizure types. Carbamazepine is a current first-line treatment for partial onset seizures in the USA and Europe. Phenytoin is no longer considered a first-line treatment due to concerns over adverse events associated with its use, but the drug is still commonly used in low- to middle-income countries because of its low cost. No consistent differences in efficacy have been found between carbamazepine and phenytoin in individual trials, although the confidence intervals generated by these studies are wide. Differences in efficacy may therefore be shown by synthesising the data of the individual trials. OBJECTIVES: To review the time to withdrawal, six- and 12-month remission, and first seizure with carbamazepine compared to phenytoin, used as monotherapy in people with partial onset seizures (simple partial, complex partial, or secondarily generalised tonic-clonic seizures), or generalised tonic-clonic seizures, with or without other generalised seizure types. SEARCH METHODS: For the latest update we searched the Cochrane Epilepsy Group's Specialised Register (1st November 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) via the Cochrane Register of Studies Online (CRSO, 1st November 2016), MEDLINE (Ovid, 1946 to 1 November 2016), ClinicalTrials.gov (1 November 2016), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP, 1st November 2016). Previously we also searched SCOPUS (1823 to 16th September 2014) as an alternative to Embase, but this is no longer necessary, because randomised and quasi-randomised controlled trials in Embase are now included in CENTRAL. We handsearched relevant journals, contacted pharmaceutical companies, original trial investigators and experts in the field. SELECTION CRITERIA: Randomised controlled trials (RCTs) in children or adults with partial onset seizures or generalised onset tonic-clonic seizures, comparing carbamazepine monotherapy versus phenytoin monotherapy. DATA COLLECTION AND ANALYSIS: This is an individual participant data (IPD) review. Our primary outcome was time to withdrawal of allocated treatment, and our secondary outcomes were time to six-month remission, time to 12-month remission, and time to first seizure post-randomisation. We used Cox proportional hazards regression models to obtain study-specific estimates of hazard ratios (HRs) with 95% confidence intervals (CIs) and the generic inverse variance method to obtain the overall pooled HR and 95% CI. MAIN RESULTS: IPD were available for 595 participants out of 1192 eligible individuals, from four out of 12 trials (i.e. 50% of the potential data). For remission outcomes, HR greater than 1 indicates an advantage for phenytoin; and for first seizure and withdrawal outcomes, HR greater than 1 indicates an advantage for carbamazepine. The methodological quality of the four studies providing IPD was generally good and we rated it at low risk of bias overall in the analyses.The main overall results (pooled HR adjusted for seizure type) were time to withdrawal of allocated treatment: 1.04 (95% CI 0.78 to 1.39; three trials, 546 participants); time to 12-month remission: 1.01 (95% CI 0.78 to 1.31; three trials, 551 participants); time to six-month remission: 1.11 (95% CI 0.89 to 1.37; three trials, 551 participants); and time to first seizure: 0.85 (95% CI 0.70 to 1.04; four trials, 582 participants). The results suggest no overall statistically significant difference between the drugs for these outcomes. There is some evidence of an advantage for phenytoin for individuals with generalised onset seizures for our primary outcome (time to withdrawal of allocated treatment): pooled HR 0.42 (95% CI 0.18 to 0.96; two trials, 118 participants); and a statistical interaction between treatment effect and epilepsy type (partial versus generalised) for this outcome (P = 0.02). However, misclassification of seizure type for up to 48 individuals (32% of those with generalised epilepsy) may have confounded the results of this review. Despite concerns over side effects leading to the withdrawal of phenytoin as a first-line treatment in the USA and Europe, we found no evidence that phenytoin is more likely to be associated with serious side effects than carbamazepine; 26 individuals withdrew from 290 randomised (9%) to carbamazepine due to adverse effects, compared to 12 out of 299 (4%) randomised to phenytoin from four studies conducted in the USA and Europe (risk ratio (RR) 1.42, 95% CI 1.13 to 1.80, P = 0.014). We rated the quality of the evidence as low to moderate according to GRADE criteria, due to imprecision and potential misclassification of seizure type. AUTHORS' CONCLUSIONS: We have not found evidence for a statistically significant difference between carbamazepine and phenytoin for the efficacy outcomes examined in this review, but CIs are wide and we cannot exclude the possibility of important differences. There is no evidence in this review that phenytoin is more strongly associated with serious adverse events than carbamazepine. There is some evidence that people with generalised seizures may be less likely to withdraw early from phenytoin than from carbamazepine, but misclassification of seizure type may have impacted upon our results. We recommend caution when interpreting the results of this review, and do not recommend that our results alone should be used in choosing between carbamazepine and phenytoin. We recommend that future trials should be designed to the highest quality possible, with considerations of allocation concealment and masking, choice of population, choice of outcomes and analysis, and presentation of results.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbamazepina/uso terapêutico , Epilepsias Parciais/tratamento farmacológico , Epilepsia Generalizada/tratamento farmacológico , Fenitoína/uso terapêutico , Adulto , Anticonvulsivantes/efeitos adversos , Carbamazepina/efeitos adversos , Criança , Humanos , Quimioterapia de Indução , Fenitoína/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Tempo , Suspensão de Tratamento
9.
Cochrane Database Syst Rev ; 12: CD011412, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29243813

RESUMO

BACKGROUND: Epilepsy is a common neurological condition with a worldwide prevalence of around 1%. Approximately 60% to 70% of people with epilepsy will achieve a longer-term remission from seizures, and most achieve that remission shortly after starting antiepileptic drug treatment. Most people with epilepsy are treated with a single antiepileptic drug (monotherapy) and current guidelines from the National Institute for Health and Care Excellence (NICE) in the United Kingdom for adults and children recommend carbamazepine or lamotrigine as first-line treatment for partial onset seizures and sodium valproate for generalised onset seizures; however a range of other antiepileptic drug (AED) treatments are available, and evidence is needed regarding their comparative effectiveness in order to inform treatment choices. OBJECTIVES: To compare the time to withdrawal of allocated treatment, remission and first seizure of 10 AEDs (carbamazepine, phenytoin, sodium valproate, phenobarbitone, oxcarbazepine, lamotrigine, gabapentin, topiramate, levetiracetam, zonisamide) currently used as monotherapy in children and adults with partial onset seizures (simple partial, complex partial or secondary generalised) or generalised tonic-clonic seizures with or without other generalised seizure types (absence, myoclonus). SEARCH METHODS: We searched the following databases: Cochrane Epilepsy's Specialised Register, CENTRAL, MEDLINE and SCOPUS, and two clinical trials registers. We handsearched relevant journals and contacted pharmaceutical companies, original trial investigators, and experts in the field. The date of the most recent search was 27 July 2016. SELECTION CRITERIA: We included randomised controlled trials of a monotherapy design in adults or children with partial onset seizures or generalised onset tonic-clonic seizures (with or without other generalised seizure types). DATA COLLECTION AND ANALYSIS: This was an individual participant data (IPD) review and network meta-analysis. Our primary outcome was 'time to withdrawal of allocated treatment', and our secondary outcomes were 'time to achieve 12-month remission', 'time to achieve six-month remission', 'time to first seizure post-randomisation', and 'occurrence of adverse events'. We presented all time-to-event outcomes as Cox proportional hazard ratios (HRs) with 95% confidence intervals (CIs). We performed pairwise meta-analysis of head-to-head comparisons between drugs within trials to obtain 'direct' treatment effect estimates and we performed frequentist network meta-analysis to combine direct evidence with indirect evidence across the treatment network of 10 drugs. We investigated inconsistency between direct estimates and network meta-analysis via node splitting. Due to variability in methods and detail of reporting adverse events, we have not performed an analysis. We have provided a narrative summary of the most commonly reported adverse events. MAIN RESULTS: IPD was provided for at least one outcome of this review for 12,391 out of a total of 17,961 eligible participants (69% of total data) from 36 out of the 77 eligible trials (47% of total trials). We could not include IPD from the remaining 41 trials in analysis for a variety of reasons, such as being unable to contact an author or sponsor to request data, data being lost or no longer available, cost and resources required to prepare data being prohibitive, or local authority or country-specific restrictions.We were able to calculate direct treatment effect estimates for between half and two thirds of comparisons across the outcomes of the review, however for many of the comparisons, data were contributed by only a single trial or by a small number of participants, so confidence intervals of estimates were wide.Network meta-analysis showed that for the primary outcome 'Time to withdrawal of allocated treatment,' for individuals with partial seizures; levetiracetam performed (statistically) significantly better than current first-line treatment carbamazepine and other current first-line treatment lamotrigine performed better than all other treatments (aside from levetiracetam); carbamazepine performed significantly better than gabapentin and phenobarbitone (high-quality evidence). For individuals with generalised onset seizures, first-line treatment sodium valproate performed significantly better than carbamazepine, topiramate and phenobarbitone (moderate- to high-quality evidence). Furthermore, for both partial and generalised onset seizures, the earliest licenced treatment, phenobarbitone seems to perform worse than all other treatments (moderate- to high-quality evidence).Network meta-analysis also showed that for secondary outcomes 'Time to 12-month remission of seizures' and 'Time to six-month remission of seizures,' few notable differences were shown for either partial or generalised seizure types (moderate- to high-quality evidence). For secondary outcome 'Time to first seizure,' for individuals with partial seizures; phenobarbitone performed significantly better than both current first-line treatments carbamazepine and lamotrigine; carbamazepine performed significantly better than sodium valproate, gabapentin and lamotrigine. Phenytoin also performed significantly better than lamotrigine (high-quality evidence). In general, the earliest licenced treatments (phenytoin and phenobarbitone) performed better than the other treatments for both seizure types (moderate- to high-quality evidence).Generally, direct evidence and network meta-analysis estimates (direct plus indirect evidence) were numerically similar and consistent with confidence intervals of effect sizes overlapping.The most commonly reported adverse events across all drugs were drowsiness/fatigue, headache or migraine, gastrointestinal disturbances, dizziness/faintness and rash or skin disorders. AUTHORS' CONCLUSIONS: Overall, the high-quality evidence provided by this review supports current guidance (e.g. NICE) that carbamazepine and lamotrigine are suitable first-line treatments for individuals with partial onset seizures and also demonstrates that levetiracetam may be a suitable alternative. High-quality evidence from this review also supports the use of sodium valproate as the first-line treatment for individuals with generalised tonic-clonic seizures (with or without other generalised seizure types) and also demonstrates that lamotrigine and levetiracetam would be suitable alternatives to either of these first-line treatments, particularly for those of childbearing potential, for whom sodium valproate may not be an appropriate treatment option due to teratogenicity.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Adulto , Aminas/uso terapêutico , Carbamazepina/análogos & derivados , Carbamazepina/uso terapêutico , Criança , Ácidos Cicloexanocarboxílicos/uso terapêutico , Epilepsias Parciais/tratamento farmacológico , Epilepsia Generalizada/tratamento farmacológico , Frutose/análogos & derivados , Frutose/uso terapêutico , Gabapentina , Humanos , Isoxazóis/uso terapêutico , Lamotrigina , Levetiracetam , Metanálise em Rede , Oxcarbazepina , Fenobarbital/uso terapêutico , Fenitoína/uso terapêutico , Piracetam/análogos & derivados , Piracetam/uso terapêutico , Indução de Remissão , Topiramato , Triazinas/uso terapêutico , Ácido Valproico/uso terapêutico , Zonisamida , Ácido gama-Aminobutírico/uso terapêutico
10.
Cochrane Database Syst Rev ; 6: CD011412, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28661008

RESUMO

BACKGROUND: Epilepsy is a common neurological condition with a worldwide prevalence of around 1%. Approximately 60% to 70% of people with epilepsy will achieve a longer-term remission from seizures, and most achieve that remission shortly after starting antiepileptic drug treatment. Most people with epilepsy are treated with a single antiepileptic drug (monotherapy) and current guidelines from the National Institute for Health and Care Excellence (NICE) in the United Kingdom for adults and children recommend carbamazepine or lamotrigine as first-line treatment for partial onset seizures and sodium valproate for generalised onset seizures; however a range of other antiepileptic drug (AED) treatments are available, and evidence is needed regarding their comparative effectiveness in order to inform treatment choices. OBJECTIVES: To compare the time to withdrawal of allocated treatment, remission and first seizure of 10 AEDs (carbamazepine, phenytoin, sodium valproate, phenobarbitone, oxcarbazepine, lamotrigine, gabapentin, topiramate, levetiracetam, zonisamide) currently used as monotherapy in children and adults with partial onset seizures (simple partial, complex partial or secondary generalised) or generalised tonic-clonic seizures with or without other generalised seizure types (absence, myoclonus). SEARCH METHODS: We searched the following databases: Cochrane Epilepsy's Specialised Register, CENTRAL, MEDLINE and SCOPUS, and two clinical trials registers. We handsearched relevant journals and contacted pharmaceutical companies, original trial investigators, and experts in the field. The date of the most recent search was 27 July 2016. SELECTION CRITERIA: We included randomised controlled trials of a monotherapy design in adults or children with partial onset seizures or generalised onset tonic-clonic seizures (with or without other generalised seizure types). DATA COLLECTION AND ANALYSIS: This was an individual participant data (IPD) review and network meta-analysis. Our primary outcome was 'time to withdrawal of allocated treatment', and our secondary outcomes were 'time to achieve 12-month remission', 'time to achieve six-month remission', 'time to first seizure post-randomisation', and 'occurrence of adverse events'. We presented all time-to-event outcomes as Cox proportional hazard ratios (HRs) with 95% confidence intervals (CIs). We performed pairwise meta-analysis of head-to-head comparisons between drugs within trials to obtain 'direct' treatment effect estimates and we performed frequentist network meta-analysis to combine direct evidence with indirect evidence across the treatment network of 10 drugs. We investigated inconsistency between direct estimates and network meta-analysis via node splitting. Due to variability in methods and detail of reporting adverse events, we have not performed an analysis. We have provided a narrative summary of the most commonly reported adverse events. MAIN RESULTS: IPD was provided for at least one outcome of this review for 12,391 out of a total of 17,961 eligible participants (69% of total data) from 36 out of the 77 eligible trials (47% of total trials). We could not include IPD from the remaining 41 trials in analysis for a variety of reasons, such as being unable to contact an author or sponsor to request data, data being lost or no longer available, cost and resources required to prepare data being prohibitive, or local authority or country-specific restrictions.We were able to calculate direct treatment effect estimates for between half and two thirds of comparisons across the outcomes of the review, however for many of the comparisons, data were contributed by only a single trial or by a small number of participants, so confidence intervals of estimates were wide.Network meta-analysis showed that for the primary outcome 'Time to withdrawal of allocated treatment,' for individuals with partial seizures; levetiracetam performed (statistically) significantly better than both current first-line treatments carbamazepine and lamotrigine; lamotrigine performed better than all other treatments (aside from levetiracetam), and carbamazepine performed significantly better than gabapentin and phenobarbitone (high-quality evidence). For individuals with generalised onset seizures, first-line treatment sodium valproate performed significantly better than carbamazepine, topiramate and phenobarbitone (moderate- to high-quality evidence). Furthermore, for both partial and generalised onset seizures, the earliest licenced treatment, phenobarbitone seems to perform worse than all other treatments (moderate- to high-quality evidence).Network meta-analysis also showed that for secondary outcomes 'Time to 12-month remission of seizures' and 'Time to six-month remission of seizures,' few notable differences were shown for either partial or generalised seizure types (moderate- to high-quality evidence). For secondary outcome 'Time to first seizure,' for individuals with partial seizures; phenobarbitone performed significantly better than both current first-line treatments carbamazepine and lamotrigine; carbamazepine performed significantly better than sodium valproate, gabapentin and lamotrigine. Phenytoin also performed significantly better than lamotrigine (high-quality evidence). In general, the earliest licenced treatments (phenytoin and phenobarbitone) performed better than the other treatments for both seizure types (moderate- to high-quality evidence).Generally, direct evidence and network meta-analysis estimates (direct plus indirect evidence) were numerically similar and consistent with confidence intervals of effect sizes overlapping.The most commonly reported adverse events across all drugs were drowsiness/fatigue, headache or migraine, gastrointestinal disturbances, dizziness/faintness and rash or skin disorders. AUTHORS' CONCLUSIONS: Overall, the high-quality evidence provided by this review supports current guidance (e.g. NICE) that carbamazepine and lamotrigine are suitable first-line treatments for individuals with partial onset seizures and also demonstrates that levetiracetam may be a suitable alternative. High-quality evidence from this review also supports the use of sodium valproate as the first-line treatment for individuals with generalised tonic-clonic seizures (with or without other generalised seizure types) and also demonstrates that lamotrigine and levetiracetam would be suitable alternatives to either of these first-line treatments, particularly for those of childbearing potential, for whom sodium valproate may not be an appropriate treatment option due to teratogenicity.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Adulto , Aminas/uso terapêutico , Carbamazepina/análogos & derivados , Carbamazepina/uso terapêutico , Criança , Ácidos Cicloexanocarboxílicos/uso terapêutico , Epilepsias Parciais/tratamento farmacológico , Epilepsia Generalizada/tratamento farmacológico , Frutose/análogos & derivados , Gabapentina , Humanos , Isoxazóis/uso terapêutico , Lamotrigina , Levetiracetam , Metanálise em Rede , Oxcarbazepina , Fenobarbital/uso terapêutico , Fenitoína/uso terapêutico , Piracetam/análogos & derivados , Piracetam/uso terapêutico , Indução de Remissão , Topiramato , Triazinas , Ácido Valproico/uso terapêutico , Zonisamida , Ácido gama-Aminobutírico/uso terapêutico
11.
JAMA ; 318(17): 1700-1701, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29114815

RESUMO

CLINICAL QUESTION: Is maternal use of antiepileptic drugs during pregnancy associated with major congenital malformations in children? BOTTOM LINE: Certain antiepileptic drugs were associated with increased rates of congenital malformations (eg, spina bifida, cardiac anomalies). Lamotrigine (2.31% in 4195 pregnancies) and levetiracetam (1.77% in 817 pregnancies) were associated with the lowest risk and valproate was associated with the highest risk (10.93% in 2565 pregnancies) compared with the offspring of women without epilepsy (2.51% in 2154 pregnancies).


Assuntos
Anormalidades Induzidas por Medicamentos , Anticonvulsivantes/efeitos adversos , Epilepsia/tratamento farmacológico , Complicações na Gravidez/tratamento farmacológico , Feminino , Humanos , Recém-Nascido , Gravidez , Literatura de Revisão como Assunto
12.
Cochrane Database Syst Rev ; (8): CD011025, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27513825

RESUMO

BACKGROUND: Epilepsy is a highly prevalent neurological condition characterized by repeated unprovoked seizures with various etiologies. Although antiepileptic medications produce clinical improvement in most individuals, nearly a third of individuals have drug-resistant epilepsy that carries significant morbidity and mortality. There remains a need for non-invasive and more effective therapies for this population. Transcranial magnetic stimulation (TMS) uses electromagnetic coils to excite or inhibit neurons, with repetitive pulses at low-frequency producing an inhibitory effect that could conceivably reduce cortical excitability associated with epilepsy. OBJECTIVES: To assess the evidence for the use of TMS in individuals with drug-resistant epilepsy compared with other available treatments in reducing seizure frequency, improving quality of life, reducing epileptiform discharges, antiepileptic medication use, and side-effects. SEARCH METHODS: We searched the Cochrane Epilepsy Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL) via the Cochrane Register of Studies Online (CRSO), MEDLINE (Ovid 1946 to 10 March 2016), ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform (ICTRP) up to March 2016. We also searched SCOPUS (1823 to June 2014) as a substitute for Embase (but it is no longer necessary to search SCOPUS, because randomized controlled trials (RCTs) and quasi-RCTs in EMBASE are now included in CENTRAL). SELECTION CRITERIA: Eligible studies were RCTs that were double-blinded, single-blinded or unblinded, and placebo, no treatment, or active controlled, which used repetitive transcranial magnetic stimulation (rTMS) without restriction of frequency, duration, intensity, or setup (focal or vertex treatment) on patients with drug-resistant epilepsy. The search revealed 274 records from the databases, that after selection provided seven full-text relevant studies for inclusion. Of the seven studies included, five were completed studies with published data and included randomized, blinded trials. The total number of participants in the seven trials was 230. DATA COLLECTION AND ANALYSIS: We extracted information from each trial including methodological data; participant demographics including baseline seizure frequency, type of epileptic drugs taken; intervention details and intervention groups for comparison; potential biases; and outcomes and time points, primarily change in seizure frequency or responder rates, as well as quality of life and epileptiform discharges, adverse effects, and changes in medication use. MAIN RESULTS: Two of the seven studies analyzed showed a statistically significant reduction in seizure rate from baseline (72% and 78.9% reduction of seizures per week from the baseline rate, respectively). The other five studies showed no statistically significant difference in seizure frequency following rTMS treatment compared with controls. We were not able to combine the results of the trials in analysis due to differences in the designs of the studies. Four studies evaluated our secondary endpoint of mean number of epileptic discharges, and three of the four showed a statistically significant reduction in discharges. Quality of life was not assessed in any of the studies. Adverse effects were uncommon among the studies and typically involved headache, dizziness, and tinnitus. No significant changes in medication use were found in the trials. AUTHORS' CONCLUSIONS: Overall, we judged the quality of evidence for the primary outcomes of this review to be low. There is evidence that rTMS is safe and not associated with any adverse events, but given the variability in technique and outcome reporting that prevented meta-analysis, the evidence for efficacy of rTMS for seizure reduction is still lacking despite reasonable evidence that it is effective at reducing epileptiform discharges.


Assuntos
Epilepsia Resistente a Medicamentos/terapia , Estimulação Magnética Transcraniana , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estimulação Magnética Transcraniana/efeitos adversos
13.
Cochrane Database Syst Rev ; 12: CD001904, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27976799

RESUMO

BACKGROUND: This is an updated version of the original Cochrane Review, first published in Issue 1, 2003 and updated in 2015. This review is one in a series of Cochrane Reviews investigating pair-wise monotherapy comparisons.Epilepsy is a common neurological condition in which abnormal electrical discharges from the brain cause recurrent unprovoked seizures. It is believed that with effective drug treatment, up to 70% of individuals with active epilepsy have the potential to become seizure-free and go into long-term remission shortly after starting drug therapy with a single antiepileptic drug in monotherapy.Worldwide, carbamazepine and phenobarbitone are commonly used broad-spectrum antiepileptic drugs, suitable for most epileptic seizure types. Carbamazepine is a current first-line treatment for partial onset seizures, and is used in the USA and Europe. Phenobarbitone is no longer considered a first-line treatment because of concerns over associated adverse events, particularly documented behavioural adverse events in children treated with the drug. However, phenobarbitone is still commonly used in low- and middle-income countries because of its low cost. No consistent differences in efficacy have been found between carbamazepine and phenobarbitone in individual trials; however, the confidence intervals generated by these studies are wide, and therefore, synthesising the data of the individual trials may show differences in efficacy. OBJECTIVES: To review the time to withdrawal, remission, and first seizure of carbamazepine compared with phenobarbitone when used as monotherapy in people with partial onset seizures (simple or complex partial and secondarily generalised) or generalised onset tonic-clonic seizures (with or without other generalised seizure types). SEARCH METHODS: For the latest update, we searched the following databases on 18 August 2016: the Cochrane Epilepsy Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL) via the Cochrane Register of Studies Online (CRSO), MEDLINE (Ovid, from 1946), the US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov), and the World Health Organization International Clinical Trials Registry Platform (ICTRP). Previously we also searched SCOPUS (from 1823) as an alternative to Embase, but this is no longer necessary, because randomised controlled trials (RCTs) and quasi-RCTs in Embase are now included in CENTRAL. We handsearched relevant journals and contacted pharmaceutical companies, original trial investigators, and experts in the field. SELECTION CRITERIA: RCTs in children or adults with partial onset seizures or generalised onset tonic-clonic seizures with a comparison of carbamazepine monotherapy versus phenobarbitone monotherapy. DATA COLLECTION AND ANALYSIS: This was an individual participant data (IPD) review. Our primary outcome was 'time to withdrawal of allocated treatment', and our secondary outcomes were 'time to achieve 12-month remission', 'time to achieve six-month remission', 'time to first seizure post-randomisation', and 'adverse events'. We used Cox proportional hazards regression models to obtain study-specific estimates of hazard ratios (HRs) with 95% confidence intervals (CIs), with the generic inverse variance method used to obtain the overall pooled HR and 95% CI. MAIN RESULTS: IPD were available for 836 participants out of 1455 eligible individuals from six out of 13 trials; 57% of the potential data. For remission outcomes, HR > 1 indicated an advantage for phenobarbitone, and for first seizure and withdrawal outcomes, HR > 1 indicated an advantage for carbamazepine.The main overall results (pooled HR adjusted for seizure type, 95% CI) were HR 1.50 for time to withdrawal of allocated treatment (95% CI 1.15 to 1.95; P = 0.003); HR 0.93 for time to achieve 12-month remission (95% CI 0.72 to 1.20; P = 0.57); HR 0.99 for time to achieve six-month remission (95% CI 0.80 to 1.23; P = 0.95); and HR 0.87 for time to first seizure (95% CI 0.72 to 1.06; P = 0.18). Results suggest an advantage for carbamazepine over phenobarbitone in terms of time to treatment withdrawal and no statistically significant evidence between the drugs for the other outcomes. We found evidence of a statistically significant interaction between treatment effect and seizure type for time to first seizure recurrence (Chi² test for subgroup differences P = 0.03), where phenobarbitone was favoured for partial onset seizures (HR 0.76, 95% CI 0.60 to 0.96; P = 0.02) and carbamazepine was favoured for generalised onset seizures (HR 1.23, 95% CI 0.88 to 1.77; P = 0.27). We found no evidence of an interaction between treatment effect and seizure type for the other outcomes. However, methodological quality of the included studies was variable, with 10 out of the 13 included studies (4 out of 6 studies contributing IPD) judged at high risk of bias for at least one methodological aspect, leading to variable individual study results, and therefore, heterogeneity in the analyses of this review. We conducted sensitivity analyses to examine the impact of poor methodological aspects, where possible. AUTHORS' CONCLUSIONS: Overall, we found evidence suggestive of an advantage for carbamazepine in terms of drug effectiveness compared with phenobarbitone (retention of the drug in terms of seizure control and adverse events) and evidence suggestive of an association between treatment effect and seizure type for time to first seizure recurrence (phenobarbitone favoured for partial seizures and carbamazepine favoured for generalised seizures). However, this evidence was judged to be of low quality due to poor methodological quality and the potential impact on individual study results (and therefore variability (heterogeneity) present in the analysis within this review), we encourage caution when interpreting the results of this review and do not advocate that the results of this review alone should be used in choosing between carbamazepine and phenobarbitone. We recommend that future trials should be designed to the highest quality possible with considerations for allocation concealment and masking, choice of population, choice of outcomes and analysis, and presentation of results.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbamazepina/uso terapêutico , Epilepsias Parciais/tratamento farmacológico , Epilepsia Generalizada/tratamento farmacológico , Fenobarbital/uso terapêutico , Adulto , Criança , Epilepsia Tônico-Clônica/tratamento farmacológico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Indução de Remissão , Convulsões/prevenção & controle
14.
Cochrane Database Syst Rev ; 11: CD001031, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27841445

RESUMO

BACKGROUND: This is an updated version of the original Cochrane review published in Issue 1, 2006 of the Cochrane Database of Systematic Reviews.Epilepsy is a common neurological condition in which abnormal electrical discharges from the brain cause recurrent unprovoked seizures. It is believed that with effective drug treatment up to 70% of individuals with active epilepsy have the potential to become seizure-free and to go into long-term remission shortly after starting drug therapy with a single antiepileptic drug (AED) in monotherapy.The correct choice of first-line antiepileptic therapy for individuals with newly diagnosed seizures is of great importance. It is important that the choice of AEDs for an individual is made using the highest quality evidence regarding the potential benefits and harms of the various treatments. It is also important that the effectiveness and tolerability of AEDs appropriate to given seizure types are compared to one another.Carbamazepine or lamotrigine are first-line recommended treatments for new onset partial seizures and as a first- or second-line treatment for generalised tonic-clonic seizures. Performing a synthesis of the evidence from existing trials will increase the precision of the results for outcomes relating to efficacy and tolerability and may assist in informing a choice between the two drugs. OBJECTIVES: To review the time to withdrawal, remission and first seizure with lamotrigine compared to carbamazepine when used as monotherapy in people with partial onset seizures (simple or complex partial and secondarily generalised) or generalised onset tonic-clonic seizures (with or without other generalised seizure types). SEARCH METHODS: The first searches for this review were run in 1997. For the most recent update we searched the Cochrane Epilepsy Group Specialized Register (17 October 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) via the Cochrane Register of Studies Online (CRSO, 17 October 2016) and MEDLINE (Ovid, 1946 to 17 October 2016). We imposed no language restrictions. We also contacted pharmaceutical companies and trial investigators. SELECTION CRITERIA: Randomised controlled trials in children or adults with partial onset seizures or generalised onset tonic-clonic seizures comparing monotherapy with either carbamazepine or lamotrigine. DATA COLLECTION AND ANALYSIS: This was an individual participant data (IPD) review. Our primary outcome was time to withdrawal of allocated treatment and our secondary outcomes were time to first seizure post-randomisation, time to six-month, 12-month and 24-month remission, and incidence of adverse events. We used Cox proportional hazards regression models to obtain trial-specific estimates of hazard ratios (HRs) with 95% confidence intervals (CIs), using the generic inverse variance method to obtain the overall pooled HR and 95% CI. MAIN RESULTS: We included 13 studies in this review. Individual participant data were available for 2572 participants out of 3394 eligible individuals from nine out of 13 trials: 78% of the potential data. For remission outcomes, a HR < 1 indicated an advantage for carbamazepine and for first seizure and withdrawal outcomes a HR < 1 indicated an advantage for lamotrigine.The main overall results (pooled HR adjusted for seizure type) were: time to withdrawal of allocated treatment (HR 0.72, 95% CI 0.63 to 0.82), time to first seizure (HR 1.22, 95% CI 1.09 to 1.37) and time to six-month remission (HR 0.84, 95% CI 0.74 to 0.94), showing a significant advantage for lamotrigine compared to carbamazepine for withdrawal but a significant advantage for carbamazepine compared to lamotrigine for first seizure and six-month remission. We found no difference between the drugs for time to 12-month remission (HR 0.91, 95% CI 0.77 to 1.07) or time to 24-month remission (HR 1.00, 95% CI 0.80 to 1.25), however only two trials followed up participants for more than one year so the evidence is limited.The results of this review are applicable mainly to individuals with partial onset seizures; 88% of included individuals experienced seizures of this type at baseline. Up to 50% of the limited number of individuals classified as experiencing generalised onset seizures at baseline may have had their seizure type misclassified, therefore we recommend caution when interpreting the results of this review for individuals with generalised onset seizures.The most commonly reported adverse events for both of the drugs across all of the included trials were dizziness, fatigue, gastrointestinal disturbances, headache and skin problems. The rate of adverse events was similar across the two drugs.The methodological quality of the included trials was generally good, however there is some evidence that the design choice of masked or open-label treatment may have influenced the withdrawal rates of the trials. Hence, we judged the quality of the evidence for the primary outcome of treatment withdrawal to be moderate for individuals with partial onset seizures and low for individuals with generalised onset seizures. For efficacy outcomes (first seizure, remission), we judged the quality of evidence to be high for individuals with partial onset seizures and moderate for individuals with generalised onset seizures. AUTHORS' CONCLUSIONS: Lamotrigine was significantly less likely to be withdrawn than carbamazepine but the results for time to first seizure suggested that carbamazepine may be superior in terms of seizure control. A choice between these first-line treatments must be made with careful consideration. We recommend that future trials should be designed to the highest quality possible with consideration of masking, choice of population, classification of seizure type, duration of follow-up, choice of outcomes and analysis, and presentation of results.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbamazepina/uso terapêutico , Epilepsias Parciais/tratamento farmacológico , Epilepsia Tônico-Clônica/tratamento farmacológico , Triazinas/uso terapêutico , Adulto , Anticonvulsivantes/efeitos adversos , Carbamazepina/efeitos adversos , Criança , Epilepsia Generalizada/tratamento farmacológico , Humanos , Lamotrigina , Ensaios Clínicos Controlados Aleatórios como Assunto , Recidiva , Triazinas/efeitos adversos , Suspensão de Tratamento
15.
Cochrane Database Syst Rev ; 4: CD001769, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27123830

RESUMO

BACKGROUND: Worldwide, phenytoin and valproate are commonly used antiepileptic drugs. It is generally believed that phenytoin is more effective for partial onset seizures, and that valproate is more effective for generalised onset tonic-clonic seizures (with or without other generalised seizure types). This review is one in a series of Cochrane reviews investigating pair-wise monotherapy comparisons. This is the latest updated version of the review first published in 2001 and updated in 2013. OBJECTIVES: To review the time to withdrawal, remission and first seizure of phenytoin compared to valproate when used as monotherapy in people with partial onset seizures or generalised tonic-clonic seizures (with or without other generalised seizure types). SEARCH METHODS: We searched the Cochrane Epilepsy Group's Specialised Register (19 May 2015), the Cochrane Central Register of Controlled Trials (CENTRAL; the Cochrane Library; 2015, Issue 4), MEDLINE (1946 to 19 May 2015), SCOPUS (19 February 2013), ClinicalTrials.gov (19 May 2015), and WHO International Clinical Trials Registry Platform ICTRP (19 May 2015). We handsearched relevant journals, contacted pharmaceutical companies, original trial investigators and experts in the field. SELECTION CRITERIA: Randomised controlled trials (RCTs) in children or adults with partial onset seizures or generalised onset tonic-clonic seizures with a comparison of valproate monotherapy versus phenytoin monotherapy. DATA COLLECTION AND ANALYSIS: This was an individual participant data (IPD) review. Outcomes were time to: (a) withdrawal of allocated treatment (retention time); (b) achieve 12-month remission (seizure-free period); (c) achieve six-month remission (seizure-free period); and (d) first seizure (post-randomisation). We used Cox proportional hazards regression models to obtain study-specific estimates of hazard ratios (HRs) with 95% confidence intervals (CIs), and the generic inverse variance method to obtain the overall pooled HR and 95% CI. MAIN RESULTS: IPD were available for 669 individuals out of 1119 eligible individuals from five out of 11 trials, 60% of the potential data. Results apply to partial onset seizures (simple, complex and secondary generalised tonic-clonic seizures), and generalised tonic-clonic seizures, but not other generalised seizure types (absence or myoclonus seizure types). For remission outcomes: HR > 1 indicates an advantage for phenytoin; and for first seizure and withdrawal outcomes: HR > 1 indicates an advantage for valproate.The main overall results (pooled HR adjusted for seizure type) were time to: (a) withdrawal of allocated treatment 1.09 (95% CI 0.76 to 1.55); (b) achieve 12-month remission 0.98 (95% CI 0.78 to 1.23); (c) achieve six-month remission 0.95 (95% CI 0.78 to 1.15); and (d) first seizure 0.93 (95% CI 0.75 to 1.14). The results suggest no overall difference between the drugs for these outcomes. We did not find any statistical interaction between treatment and seizure type (partial versus generalised). AUTHORS' CONCLUSIONS: We have not found evidence that a significant difference exists between phenytoin and valproate for the outcomes examined in this review. However misclassification of seizure type may have confounded the results of this review. Results do not apply to absence or myoclonus seizure types. No outright evidence was found to support or refute current treatment policies.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsias Parciais/tratamento farmacológico , Epilepsia Tônico-Clônica/tratamento farmacológico , Fenitoína/uso terapêutico , Ácido Valproico/uso terapêutico , Epilepsia Generalizada/tratamento farmacológico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Convulsões/tratamento farmacológico
16.
Cochrane Database Syst Rev ; 11: CD010224, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819746

RESUMO

BACKGROUND: There is evidence that certain antiepileptic drugs (AEDs) are teratogenic and are associated with an increased risk of congenital malformation. The majority of women with epilepsy continue taking AEDs throughout pregnancy; therefore it is important that comprehensive information on the potential risks associated with AED treatment is available. OBJECTIVES: To assess the effects of prenatal exposure to AEDs on the prevalence of congenital malformations in the child. SEARCH METHODS: We searched the Cochrane Epilepsy Group Specialized Register (September 2015), Cochrane Central Register of Controlled Trials (CENTRAL) (2015, Issue 11), MEDLINE (via Ovid) (1946 to September 2015), EMBASE (1974 to September 2015), Pharmline (1978 to September 2015), Reprotox (1983 to September 2015) and conference abstracts (2010-2015) without language restriction. SELECTION CRITERIA: We included prospective cohort controlled studies, cohort studies set within pregnancy registries and randomised controlled trials. Participants were women with epilepsy taking AEDs; the two control groups were women without epilepsy and women with epilepsy who were not taking AEDs during pregnancy. DATA COLLECTION AND ANALYSIS: Three authors independently selected studies for inclusion. Five authors completed data extraction and risk of bias assessments. The primary outcome was the presence of a major congenital malformation. Secondary outcomes included specific types of major congenital malformations. Where meta-analysis was not possible, we reviewed included studies narratively. MAIN RESULTS: We included 50 studies, with 31 contributing to meta-analysis. Study quality varied, and given the observational design, all were at high risk of certain biases. However, biases were balanced across the AEDs investigated and we believe that the results are not explained by these biases.Children exposed to carbamazepine (CBZ) were at a higher risk of malformation than children born to women without epilepsy (N = 1367 vs 2146, risk ratio (RR) 2.01, 95% confidence interval (CI) 1.20 to 3.36) and women with untreated epilepsy (N = 3058 vs 1287, RR 1.50, 95% CI 1.03 to 2.19). Children exposed to phenobarbital (PB) were at a higher risk of malformation than children born to women without epilepsy (N = 345 vs 1591, RR 2.84, 95% CI 1.57 to 5.13). Children exposed to phenytoin (PHT) were at an increased risk of malformation compared with children born to women without epilepsy (N = 477 vs 987, RR 2.38, 95% CI 1.12 to 5.03) and to women with untreated epilepsy (N = 640 vs 1256, RR 2.40, 95% CI 1.42 to 4.08). Children exposed to topiramate (TPM) were at an increased risk of malformation compared with children born to women without epilepsy (N = 359 vs 442, RR 3.69, 95% CI 1.36 to 10.07). The children exposed to valproate (VPA) were at a higher risk of malformation compared with children born to women without epilepsy (N = 467 vs 1936, RR 5.69, 95% CI 3.33 to 9.73) and to women with untreated epilepsy (N = 1923 vs 1259, RR 3.13, 95% CI 2.16 to 4.54). There was no increased risk for major malformation for lamotrigine (LTG). Gabapentin (GBP), levetiracetam (LEV), oxcarbazepine (OXC), primidone (PRM) or zonisamide (ZNS) were not associated with an increased risk, however, there were substantially fewer data for these medications.For AED comparisons, children exposed to VPA had the greatest risk of malformation (10.93%, 95% CI 8.91 to 13.13). Children exposed to VPA were at an increased risk of malformation compared with children exposed to CBZ (N = 2529 vs 4549, RR 2.44, 95% CI 2.00 to 2.94), GBP (N = 1814 vs 190, RR 6.21, 95% CI 1.91 to 20.23), LEV (N = 1814 vs 817, RR 5.82, 95% CI 3.13 to 10.81), LTG (N = 2021 vs 4164, RR 3.56, 95% CI 2.77 to 4.58), TPM (N = 1814 vs 473, RR 2.35, 95% CI 1.40 to 3.95), OXC (N = 676 vs 238, RR 3.71, 95% CI 1.65 to 8.33), PB (N = 1137 vs 626, RR 1.59, 95% CI 1.11 to 2.29, PHT (N = 2319 vs 1137, RR 2.00, 95% CI 1.48 to 2.71) or ZNS (N = 323 vs 90, RR 17.13, 95% CI 1.06 to 277.48). Children exposed to CBZ were at a higher risk of malformation than those exposed to LEV (N = 3051 vs 817, RR 1.84, 95% CI 1.03 to 3.29) and children exposed to LTG (N = 3385 vs 4164, RR 1.34, 95% CI 1.01 to 1.76). Children exposed to PB were at a higher risk of malformation compared with children exposed to GBP (N = 204 vs 159, RR 8.33, 95% CI 1.04 to 50.00), LEV (N = 204 vs 513, RR 2.33, 95% CI 1.04 to 5.00) or LTG (N = 282 vs 1959, RR 3.13, 95% CI 1.64 to 5.88). Children exposed to PHT had a higher risk of malformation than children exposed to LTG (N = 624 vs 4082, RR 1.89, 95% CI 1.19 to 2.94) or to LEV (N = 566 vs 817, RR 2.04, 95% CI 1.09 to 3.85); however, the comparison to LEV was not significant in the random-effects model. Children exposed to TPM were at a higher risk of malformation than children exposed to LEV (N = 473 vs 817, RR 2.00, 95% CI 1.03 to 3.85) or LTG (N = 473 vs 3975, RR 1.79, 95% CI 1.06 to 2.94). There were no other significant differences, or comparisons were limited to a single study.We found significantly higher rates of specific malformations associating PB exposure with cardiac malformations and VPA exposure with neural tube, cardiac, oro-facial/craniofacial, and skeletal and limb malformations in comparison to other AEDs. Dose of exposure mediated the risk of malformation following VPA exposure; a potential dose-response association for the other AEDs remained less clear. AUTHORS' CONCLUSIONS: Exposure in the womb to certain AEDs carried an increased risk of malformation in the foetus and may be associated with specific patterns of malformation. Based on current evidence, LEV and LTG exposure carried the lowest risk of overall malformation; however, data pertaining to specific malformations are lacking. Physicians should discuss both the risks and treatment efficacy with the patient prior to commencing treatment.


Assuntos
Anormalidades Induzidas por Medicamentos , Anticonvulsivantes/efeitos adversos , Epilepsia/tratamento farmacológico , Complicações na Gravidez/tratamento farmacológico , Anormalidades Induzidas por Medicamentos/classificação , Anormalidades Cardiovasculares , Anormalidades Craniofaciais , Feminino , Humanos , Recém-Nascido , Anormalidades Musculoesqueléticas , Defeitos do Tubo Neural , Gravidez
17.
Cochrane Database Syst Rev ; (6): CD008841, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26077821

RESUMO

BACKGROUND: Around half of people with epilepsy will not achieve seizure freedom on their first antiepileptic drug; many will require add-on treatment with another drug. Sometimes multiple treatment combinations are tried to achieve maximum seizure control, although around a third of people do not achieve complete seizure control. Lacosamide is an antiepileptic drug that has been licensed as an add-on treatment for partial epilepsy. OBJECTIVES: To evaluate the efficacy and tolerability of lacosamide when used as an add-on treatment for patients with drug-resistant partial epilepsy. SEARCH METHODS: We searched the Cochrane Epilepsy Group's Specialized Register (21 May 2015), the Cochrane Central Register of Controlled Trials (CENTRAL , The Cochrane Library Issue 4, April 2015), MEDLINE (Ovid, 1946 to 21 May 2015), Scopus (1823 to 13 November 2014), ClinicalTrials.gov (21 May 2015) and the WHO International Clinical Trials Registry Platform (ICTRP, 21 May 2015). We imposed no language restrictions. We contacted UCB (sponsors of lacosamide) and experts in the field. SELECTION CRITERIA: Randomised controlled trials of add-on lacosamide in people with drug-resistant partial epilepsy. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trials for inclusion and extracted the relevant data. We assessed the following outcomes: (1) 50% or greater reduction in seizure frequency; (2) seizure freedom; (3) treatment withdrawal for any reason; and (4) adverse events. Primary analyses were intention-to-treat. Summary risk ratios were estimated for each outcome. MAIN RESULTS: We included three trials in our review (1311 participants), which were classified as having low risk of bias. All trials were placebo-controlled and assessed doses ranging from 200 mg to 600 mg per day. Trial duration ranged from 24 to 26 weeks. All trials used adequate methods of randomisation and were double-blind. Overall the quality of the evidence was rated as moderate to high. The overall risk ratio for a 50% or greater reduction in seizure frequency for all doses of lacosamide compared with placebo was 1.70 (95% confidence interval (CI) 1.38 to 2.10); for seizure freedom for all doses of lacosamide compared with placebo was 2.50 (95% CI 0.85 to 7.34); and for treatment withdrawal for all doses of lacosamide compared with placebo was 1.88 (95% CI 1.40 to 2.52). Adverse effects significantly associated with lacosamide were abnormal co-ordination (risk ratio (RR) 6.12, 99% CI 1.35 to 27.77), diplopia (RR 5.29, 99% CI 1.97 to 14.23), dizziness (RR 3.53, 99% CI 2.20 to 5.68), nausea (RR 2.37, 99% CI 1.23 to 4.58) and vomiting (RR 3.49, 99% CI 1.43 to 8.54). Adverse effects that were not statistically significant were headache (RR 1.34, 99% CI 0.83 to 2.18), fatigue (RR 2.11, 99% CI 0.92 to 4.85), nystagmus (RR 1.47, 99% CI 0.61 to 3.52) and somnolence (RR 1.44, 99% CI 0.67 to 3.09). AUTHORS' CONCLUSIONS: This review has shown lacosamide to be effective and fairly well tolerated in the short term when used as add-on treatment for drug-resistant partial epilepsy in adults. Higher doses of lacosamide may be more associated with adverse effects and withdrawal of the drug than lower doses. Additional evidence on children is needed, and longer-term efficacy is unknown.


Assuntos
Acetamidas/uso terapêutico , Anticonvulsivantes/uso terapêutico , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsias Parciais/tratamento farmacológico , Acetamidas/efeitos adversos , Adulto , Anticonvulsivantes/efeitos adversos , Quimioterapia Combinada/métodos , Humanos , Lacosamida , Ensaios Clínicos Controlados Aleatórios como Assunto , Convulsões/tratamento farmacológico
18.
Cochrane Database Syst Rev ; (4): CD002896, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25835947

RESUMO

BACKGROUND: Vagus nerve stimulation (VNS) is a neuromodulatory treatment that is used as an adjunctive therapy for treating people with medically refractory epilepsy. VNS consists of chronic intermittent electrical stimulation of the vagus nerve, delivered by a programmable pulse generator. The majority of people given a diagnosis of epilepsy have a good prognosis, and their seizures will be controlled by treatment with a single antiepileptic drug (AED), but up to 20%-30% of patients will develop drug-resistant epilepsy, often requiring treatment with combinations of AEDs. The aim of this systematic review was to overview the current evidence for the efficacy and tolerability of vagus nerve stimulation when used as an adjunctive treatment for people with drug-resistant partial epilepsy. This is an updated version of a Cochrane review published in Issue 7, 2010. OBJECTIVES: To determine:(1) The effects on seizures of VNS compared to controls e.g. high-level stimulation compared to low-level stimulation (presumed sub-therapeutic dose); and(2) The adverse effect profile of VNS compared to controls e.g. high-level stimulation compared to low-level stimulation. SEARCH METHODS: We searched the Cochrane Epilepsy Group's Specialised Register (23 February 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 23 February 2015), MEDLINE (1946 to 23 February 2015), SCOPUS (1823 to 23 February 2015), ClinicalTrials.gov (23 February 2015) and ICTRP (23 February 2015). No language restrictions were imposed. SELECTION CRITERIA: The following study designs were eligible for inclusion: randomised, double-blind, parallel or crossover studies, controlled trials of VNS as add-on treatment comparing high and low stimulation paradigms (including three different stimulation paradigms - duty cycle: rapid, mid and slow) and VNS stimulation versus no stimulation or a different intervention. Eligible participants were adults or children with drug-resistant partial seizures not eligible for surgery or who failed surgery. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials for inclusion and extracted data. The following outcomes were assessed: (a) 50% or greater reduction in total seizure frequency; (b) treatment withdrawal (any reason); (c) adverse effects; (d) quality of life; (e) cognition; (f) mood. Primary analyses were intention-to-treat. Sensitivity best and worst case analyses were also undertaken to account for missing outcome data. Pooled Risk Ratios (RR) with 95% confidence intervals (95% Cl) were estimated for the primary outcomes of seizure frequency and treatment withdrawal. For adverse effects, pooled RRs and 99% CI's were calculated. MAIN RESULTS: Five trials recruited a total of 439 participants and between them compared different types of VNS stimulation therapy. Baseline phase ranged from 4 to 12 weeks and double-blind treatment phases from 12 to 20 weeks in the five trials. Overall, two studies were rated as having a low risk of bias and three had an unclear risk of bias due to lack of reported information around study design. Effective blinding of studies of VNS is difficult due to the frequency of stimulation-related side effects such as voice alteration; this may limit the validity of the observed treatment effects. Four trials compared high frequency stimulation to low frequency stimulation and were included in quantitative syntheses (meta-analyses).The overall risk ratio (95% CI) for 50% or greater reduction in seizure frequency across all studies was 1.73 (1.13 to 2.64) showing that high frequency VNS was over one and a half times more effective than low frequency VNS. For this outcome, we rated the evidence as being moderate in quality due to incomplete outcome data in one included study; however results did not vary substantially and remained statistically significant for both the best and worst case scenarios. The risk ratio (RR) for treatment withdrawal was 2.56 (0.51 to 12.71), however evidence for this outcome was rated as low quality due to imprecision of the result and incomplete outcome data in one included study. The RR of adverse effects were as follows: (a) voice alteration and hoarseness 2.17 (99% CI 1.49 to 3.17); (b) cough 1.09 (99% CI 0.74 to 1.62); (c) dyspnea 2.45 (99% CI 1.07 to 5.60); (d) pain 1.01 (99% CI 0.60 to 1.68); (e) paresthesia 0.78 (99% CI 0.39 to 1.53); (f) nausea 0.89 (99% CI 0.42 to 1.90); (g) headache 0.90 (99% CI 0.48 to 1.69); evidence of adverse effects was rated as moderate to low quality due to imprecision of the result and/or incomplete outcome data in one included study. No important heterogeneity between studies was found for any of the outcomes. AUTHORS' CONCLUSIONS: VNS for partial seizures appears to be an effective and well tolerated treatment in 439 included participants from five trials. Results of the overall efficacy analysis show that VNS stimulation using the high stimulation paradigm was significantly better than low stimulation in reducing frequency of seizures. Results for the outcome "withdrawal of allocated treatment" suggest that VNS is well tolerated as withdrawals were rare. No significant difference was found in withdrawal rates between the high and low stimulation groups, however limited information was available from the evidence included in this review so important differences between high and low stimulation cannot be excluded . Adverse effects associated with implantation and stimulation were primarily hoarseness, cough, dyspnea, pain, paresthesia, nausea and headache, with hoarseness and dyspnea more likely to occur on high stimulation than low stimulation. However, the evidence on these outcomes is limited and of moderate to low quality. Further high quality research is needed to fully evaluate the efficacy and tolerability of VNS for drug resistant partial seizures.


Assuntos
Epilepsias Parciais/terapia , Estimulação do Nervo Vago/métodos , Adulto , Resistência a Medicamentos , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Nervo Vago
19.
Cochrane Database Syst Rev ; (3): CD007286, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25738821

RESUMO

BACKGROUND: The incidence of seizures following supratentorial craniotomy for non-traumatic pathology has been estimated to be between 15% to 20%; however, the risk of experiencing a seizure may vary from 3% to 92% over a five-year period. Postoperative seizures can precipitate the development of epilepsy; seizures are most likely to occur within the first month of cranial surgery. The use of antiepileptic drugs (AEDs) administered pre- or postoperatively to prevent seizures following cranial surgery has been investigated in a number of randomised controlled trials (RCTs). OBJECTIVES: To determine the efficacy and safety of AEDs when used prophylactically in people undergoing craniotomy and to examine which AEDs are most effective. SEARCH METHODS: Searches were run for the original review in January 2012. We performed subsequent searches in September 2012 and up to 04 August 2014. We searched the Cochrane Epilepsy Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL) and MEDLINE. We did not apply any language restrictions. SELECTION CRITERIA: We included RCTs of people with no history of epilepsy who were undergoing craniotomy for either therapeutic or diagnostic reasons. Trials with adequate randomisation methods and concealment were included; these could either be blinded or unblinded parallel trials. We did not stipulate a minimum treatment period, and we included trials using active drugs or placebo as a control group. DATA COLLECTION AND ANALYSIS: Two review authors (JP and JG) independently selected trials for inclusion and performed data extraction and risk of bias assessments. We resolved any disagreements through discussion. Outcomes investigated included the number of patients experiencing seizures (early - occurring within first week following craniotomy, and late - occurring after first week following craniotomy), the number of deaths and the number of people experiencing disability and adverse effects. Due to the heterogeneous nature of the trials, we did not combine data from the included trials in a meta-analysis; we presented the findings of the review in narrative format. MAIN RESULTS: We included eight RCTs (N = 1602), which were published between 1983 and 2013. Three trials compared a single AED (phenytoin) with a placebo or no treatment. One three-arm trial compared two AEDs (carbamazepine, phenytoin) with no treatment. A second three-arm trial compared phenytoin, phenobarbital and no treatment. Three other trials were head-to-head trials of AEDs (phenytoin vs. valproate; zonisamide vs. phenobarbital) and levetiracetam vs. phenytoin. Of the five trials comparing AEDs with controls, only one trial reported a significant difference between AED treatment and controls for early seizure occurrence. All other comparisons were non-significant. Of the head-to-head trials, none reported statistically significant differences between treatments for either early or late seizures. One head-to-head trial showed an increase in the number of deaths following one AED treatment compared to another AED treatment. Incidences of adverse effects of treatment were poorly reported, and the most trials reported no significant differences between treatment groups. However data on adverse events were limited. AUTHORS' CONCLUSIONS: There is little evidence to suggest that AED treatment administered prophylactically is effective or not effective in preventing post-craniotomy seizures. The current evidence base is limited due to the differing methodologies employed in the trials and inconsistencies in reporting of outcomes. Further evidence from good-quality, contemporary trials is required in order to assess the effectiveness of prophylactic AED treatment compared to control groups or other AEDs in preventing post-craniotomy seizures properly.


Assuntos
Anticonvulsivantes/uso terapêutico , Craniotomia/efeitos adversos , Convulsões/prevenção & controle , Anticonvulsivantes/efeitos adversos , Carbamazepina/uso terapêutico , Humanos , Isoxazóis/uso terapêutico , Fenobarbital/uso terapêutico , Fenitoína/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Convulsões/etiologia , Convulsões/mortalidade , Ácido Valproico/uso terapêutico , Zonisamida
20.
Cochrane Database Syst Rev ; (8): CD001911, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26275105

RESUMO

BACKGROUND: This is an updated version of the original Cochrane review published in Issue 2, 2002 and its subsequent update in 2010.Epilepsy is a common neurological condition in which recurrent, unprovoked seizures are caused by abnormal electrical discharges from the brain. It is believed that with effective drug treatment, up to 70% of individuals with active epilepsy have the potential to become seizure-free and go into long-term remission shortly after starting drug therapy with a single antiepileptic drug in monotherapy.Worldwide, carbamazepine and phenytoin are commonly used broad spectrum antiepileptic drugs, suitable for most epileptic seizure types. Carbamazepine is a current first line treatment for partial onset seizures in the USA and Europe. Phenytoin is no longer considered a first line treatment due to concerns over adverse events associated with its use, however the drug is still commonly used in low- to middle-income countries due to it's low cost. No consistent differences in efficacy have been found between carbamazepine and phenytoin in individual trials, however the confidence intervals generated by these studies are wide. Therefore, differences in efficacy may be shown by synthesising the data of the individual trials. OBJECTIVES: To review the time to withdrawal, six- and 12-month remission, and first seizure of carbamazepine compared to phenytoin when used as monotherapy in people with partial onset seizures (simple partial, complex partial, or secondarily generalised tonic-clonic seizures) or generalised tonic-clonic seizures, with or without other generalised seizure types. SEARCH METHODS: We searched the Cochrane Epilepsy Group's Specialised Register (16 September 2014), the Cochrane Central Register of Controlled Trials (CENTRAL; 2014, Issue 8), MEDLINE (1946 to 16 September 2014), SCOPUS (1823 to 16 September 2014), ClinicalTrials.gov (16 September 2014), and the World Health Organization (WHO) International Clinical Trials Registry Platform ICTRP (18 September 2014). We handsearched relevant journals, contacted pharmaceutical companies, original trial investigators and experts in the field. SELECTION CRITERIA: Randomised controlled trials (RCTs) in children or adults with partial onset seizures or generalised onset tonic-clonic seizures with a comparison of carbamazepine monotherapy versus phenytoin monotherapy. DATA COLLECTION AND ANALYSIS: This was an individual participant data (IPD) review. Our primary outcome was time to withdrawal of allocated treatment, and our secondary outcomes were time to 12-month remission, time to six-month remission and time to first seizure post-randomisation. We used Cox proportional hazards regression models to obtain study-specific estimates of hazard ratios (HRs) with 95% confidence intervals (CIs) and the generic inverse variance method to obtain the overall pooled HR and 95% CI. MAIN RESULTS: IPD were available for 595 participants out of 1192 eligible individuals, from four out of 12 trials (i.e. 50% of the potential data). For remission outcomes, HR > 1 indicates an advantage for phenytoin; and for first seizure and withdrawal outcomes, HR > 1 indicates an advantage for carbamazepine. Methodological quality of the four studies providing IPD was generally good and we rated it at low risk of bias overall in the analyses.The main overall results (pooled HR adjusted for seizure type) were time to withdrawal of allocated treatment: 1.04 (95% CI 0.78 to 1.39); time to 12-month remission: 1.01 (95% CI 0.78 to 1.31); time to six-month remission: 1.11 (95% CI 0.81 to 1.37); and time to first seizure: 0.85 (95% CI 0.70 to 1.04). The results suggest no overall statistically significant difference between the drugs for these outcomes. There is some evidence of an advantage for phenytoin for individuals with generalised onset seizures for our primary outcome (time to withdrawal of allocated treatment): pooled HR 0.42 (95% CI 0.18 to 0.96); and a statistical interaction between treatment effect and epilepsy type (partial versus generalised) for this outcome (P = 0.02), however misclassification of seizure type for up to 48 individuals (32% of those with generalised epilepsy) may have confounded the results of this review. Despite concerns over side effects leading to the withdrawal of phenytoin as first line treatment in the USA and Europe, we found no evidence that phenytoin is more likely to be associated with serious side effects than carbamazepine; 26 individuals withdrew from 290 randomised (9%) to carbamazepine due to adverse effects compared to 12 out of 299 (4%) randomised to phenytoin from four studies conducted in the USA and Europe (risk ratio (RR) 1.42, 95% CI 1.13 to 1.80, P = 0.014). We rated the quality of the evidence as low - moderate according to GRADE criteria, due to imprecision and potential misclassification of seizure type. AUTHORS' CONCLUSIONS: We have not found evidence that a statistically significant difference exists between carbamazepine and phenytoin for the efficacy outcomes examined in this review, however, CIs are wide and the possibility of important differences existing has not been excluded. There is no evidence in this review that phenytoin is more strongly associated with serious adverse events than carbamazepine. There is some evidence that participants with generalised seizures may be less likely to withdraw early from phenytoin than carbamazepine, but misclassification of seizure type may have impacted upon the results of this review. We recommend caution when interpreting the results of this review, and do not recommend that the results of this review alone should be used in choosing between carbamazepine and phenytoin. We recommend that future trials should be designed to the highest quality possible with considerations on allocation concealment and masking, choice of population, choice of outcomes and analysis, and presentation of results.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbamazepina/uso terapêutico , Epilepsias Parciais/tratamento farmacológico , Epilepsia Generalizada/tratamento farmacológico , Fenitoína/uso terapêutico , Adulto , Anticonvulsivantes/efeitos adversos , Carbamazepina/efeitos adversos , Criança , Humanos , Quimioterapia de Indução , Fenitoína/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Suspensão de Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA