Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 166(5): 826-841.e19, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266738

RESUMO

BACKGROUND & AIMS: Incapacitated regulatory T cells (Tregs) contribute to immune-mediated diseases. Inflammatory Tregs are evident during human inflammatory bowel disease; however, mechanisms driving the development of these cells and their function are not well understood. Therefore, we investigated the role of cellular metabolism in Tregs relevant to gut homeostasis. METHODS: Using human Tregs, we performed mitochondrial ultrastructural studies via electron microscopy and confocal imaging, biochemical and protein analyses using proximity ligation assay, immunoblotting, mass cytometry and fluorescence-activated cell sorting, metabolomics, gene expression analysis, and real-time metabolic profiling utilizing the Seahorse XF analyzer. We used a Crohn's disease single-cell RNA sequencing dataset to infer the therapeutic relevance of targeting metabolic pathways in inflammatory Tregs. We examined the superior functionality of genetically modified Tregs in CD4+ T-cell-induced murine colitis models. RESULTS: Mitochondria-endoplasmic reticulum appositions, known to mediate pyruvate entry into mitochondria via voltage-dependent anion channel 1 (VDAC1), are abundant in Tregs. VDAC1 inhibition perturbed pyruvate metabolism, eliciting sensitization to other inflammatory signals reversible by membrane-permeable methyl pyruvate supplementation. Notably, interleukin (IL) 21 diminished mitochondria-endoplasmic reticulum appositions, resulting in enhanced enzymatic function of glycogen synthase kinase 3 ß, a putative negative regulator of VDAC1, and a hypermetabolic state that amplified Treg inflammatory response. Methyl pyruvate and glycogen synthase kinase 3 ß pharmacologic inhibitor (LY2090314) reversed IL21-induced metabolic rewiring and inflammatory state. Moreover, IL21-induced metabolic genes in Tregs in vitro were enriched in human Crohn's disease intestinal Tregs. Adoptively transferred Il21r-/- Tregs efficiently rescued murine colitis in contrast to wild-type Tregs. CONCLUSIONS: IL21 triggers metabolic dysfunction associated with Treg inflammatory response. Inhibiting IL21-induced metabolism in Tregs may mitigate CD4+ T-cell-driven chronic intestinal inflammation.


Assuntos
Colite , Mitocôndrias , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Doença Crônica , Colite/imunologia , Colite/metabolismo , Colite/patologia , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Interleucinas/metabolismo , Interleucinas/farmacologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Linfócitos T Reguladores/imunologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética
2.
Gastroenterology ; 164(2): 256-271.e10, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36272457

RESUMO

BACKGROUND & AIMS: Although T-cell intrinsic expression of G9a has been associated with murine intestinal inflammation, mechanistic insight into the role of this methyltransferase in human T-cell differentiation is ill defined, and manipulation of G9a function for therapeutic use against inflammatory disorders is unexplored. METHODS: Human naive T cells were isolated from peripheral blood and differentiated in vitro in the presence of a G9a inhibitor (UNC0642) before being characterized via the transcriptome (RNA sequencing), chromatin accessibility (assay for transposase-accessible chromatin by sequencing), protein expression (cytometry by time of flight, flow cytometry), metabolism (mitochondrial stress test, ultrahigh performance liquid chromatography-tandem mas spectroscopy) and function (T-cell suppression assay). The in vivo role of G9a was assessed using 3 murine models. RESULTS: We discovered that pharmacologic inhibition of G9a enzymatic function in human CD4 T cells led to spontaneous generation of FOXP3+ T cells (G9a-inibitors-T regulatory cells [Tregs]) in vitro that faithfully reproduce human Tregs, functionally and phenotypically. Mechanistically, G9a inhibition altered the transcriptional regulation of genes involved in lipid biosynthesis in T cells, resulting in increased intracellular cholesterol. Metabolomic profiling of G9a-inibitors-Tregs confirmed elevated lipid pathways that support Treg development through oxidative phosphorylation and enhanced lipid membrane composition. Pharmacologic G9a inhibition promoted Treg expansion in vivo upon antigen (gliadin) stimulation and ameliorated acute trinitrobenzene sulfonic acid-induced colitis secondary to tissue-specific Treg development. Finally, Tregs lacking G9a expression (G9a-knockout Tregs) remain functional chronically and can rescue T-cell transfer-induced colitis. CONCLUSION: G9a inhibition promotes cholesterol metabolism in T cells, favoring a metabolic profile that facilitates Treg development in vitro and in vivo. Our data support the potential use of G9a inhibitors in the treatment of immune-mediated conditions including inflammatory bowel disease.


Assuntos
Linfócitos T CD4-Positivos , Colite , Camundongos , Humanos , Animais , Metabolismo dos Lipídeos , Linfócitos T Reguladores/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Cromatina , Inflamação , Colesterol , Lipídeos , Fatores de Transcrição Forkhead/metabolismo
3.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37676734

RESUMO

CD8+ T cells outnumber CD4+ cells in multiple sclerosis (MS) lesions associated with disease progression, but the pathogenic role and antigenic targets of these clonally expanded effectors are unknown. Based on evidence that demyelination is necessary but not sufficient for disease progression in MS, we previously hypothesized that CNS-infiltrating CD8+ T cells specific for neuronal antigens directly drive the axonal and neuronal injury that leads to cumulative neurologic disability in patients with MS. We now show that demyelination induced expression of MHC class I on neurons and axons and resulted in presentation of a neuron-specific neoantigen (synapsin promoter-driven chicken ovalbumin) to antigen-specific CD8+ T cells (anti-ovalbumin OT-I TCR-transgenic T cells). These neuroantigen-specific effectors surveilled the CNS in the absence of demyelination but were not retained. However, upon induction of demyelination via cuprizone intoxication, neuroantigen-specific CD8+ T cells proliferated, accumulated in the CNS, and damaged neoantigen-expressing neurons and axons. We further report elevated neuronal expression of MHC class I and ß2-microglobulin transcripts and protein in gray matter and white matter tracts in tissue from patients with MS. These findings support a pathogenic role for autoreactive anti-axonal and anti-neuronal CD8+ T cells in MS progression.


Assuntos
Esclerose Múltipla , Humanos , Linfócitos T CD8-Positivos , Axônios/metabolismo , Neurônios/metabolismo , Progressão da Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA