Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 22(9): 1843-55, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23390132

RESUMO

Spinal Muscular Atrophy (SMA) is due to the loss of the survival motor neuron gene 1 (SMN1), resulting in motor neuron (MN) degeneration, muscle atrophy and loss of motor function. While SMN2 encodes a protein identical to SMN1, a single nucleotide difference in exon 7 causes most of the SMN2-derived transcripts to be alternatively spliced resulting in a truncated and unstable protein (SMNΔ7). SMA patients retain at least one SMN2 copy, making it an important target for therapeutics. Many of the existing SMA models are very severe, with animals typically living less than 2 weeks. Here, we present a novel intermediate mouse model of SMA based upon the human genomic SMN2 gene. Genetically, this model is similar to the well-characterized SMNΔ7 model; however, we have manipulated the SMNΔ7 transgene to encode a modestly more functional protein referred to as SMN read-through (SMN(RT)). By introducing the SMN(RT) transgene onto the background of a severe mouse model of SMA (SMN2(+/+);Smn(-/-)), disease severity was significantly decreased based upon a battery of phenotypic parameters, including MN pathology and a significant extension in survival. Importantly, there is not a full phenotypic correction, allowing for the examination of a broad range of therapeutics, including SMN2-dependent and SMN-independent pathways. This novel animal model serves as an important biological and therapeutic model for less severe forms of SMA and provides an in vivo validation of the SMN(RT) protein.


Assuntos
Modelos Animais de Doenças , Atrofia Muscular Espinal/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Animais , Peso Corporal , Encéfalo/metabolismo , Éxons , Regulação da Expressão Gênica , Humanos , Longevidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atrofia Muscular Espinal/patologia , Fenótipo , Regiões Promotoras Genéticas , RNA/genética , Splicing de RNA , Medula Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética
2.
Biochem Biophys Res Commun ; 417(1): 376-81, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22172949

RESUMO

Spinal Muscular Atrophy (SMA), an autosomal recessive neuromuscular disorder, is the leading genetic cause of infant mortality. SMA is caused by the homozygous loss of Survival Motor Neuron-1 (SMN1). SMA, however, is not due to complete absence of SMN, rather a low level of functional full-length SMN is produced by a nearly identical copy gene called SMN2. Despite SMN's ubiquitous expression, motor neurons are preferentially affected by low SMN levels. Recently gene replacement strategies have shown tremendous promise in animal models of SMA. In this study, we used self-complementary Adeno Associated Virus (scAAV) expressing full-length SMN cDNA to compare two different routes of viral delivery in a severe SMA mouse model. This was accomplished by injecting scAAV9-SMN vector intravenously (IV) or intracerebroventricularly (ICV) into SMA mice. Both routes of delivery resulted in a significant increase in lifespan and weight compared to untreated mice with a subpopulation of mice surviving more than 200days. However, the ICV injected mice gained significantly more weight than their IV treated counterparts. Likewise, survival analysis showed that ICV treated mice displayed fewer early deaths than IV treated animals. Collectively, this report demonstrates that route of delivery is a crucial component of gene therapy treatment for SMA.


Assuntos
Terapia Genética/métodos , Atrofia Muscular Espinal/terapia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Animais , Dependovirus , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Teste de Complementação Genética , Vetores Genéticos , Injeções Intraventriculares , Camundongos , Atrofia Muscular Espinal/patologia , Proteína 2 de Sobrevivência do Neurônio Motor/genética
3.
Hum Gene Ther ; 23(3): 330-5, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22029744

RESUMO

Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disorder, is the leading genetic cause of infant mortality. SMA is caused by the homozygous loss of Survival Motor Neuron-1 (SMN1). In humans, a nearly identical copy gene is present, SMN2. SMN2 is retained in all SMA patients and encodes the same protein as SMN1. However, SMN1 and SMN2 differ by a silent C-to-T transition at the 5' end of exon 7, causing alternative splicing of SMN2 transcripts and low levels of full-length SMN. SMA is monogenic and therefore well suited for gene-replacement strategies. Recently, self-complementary adeno-associated virus (scAAV) vectors have been used to deliver the SMN cDNA to an animal model of disease, the SMNΔ7 mouse. In this study, we examine a severe model of SMA, Smn(-/-);SMN2(+/+), to determine whether gene replacement is viable in a model in which disease development begins in utero. Using two delivery paradigms, intracerebroventricular injections and intravenous injections, we delivered scAAV9-SMN and demonstrated a two to four fold increase in survival, in addition to improving many of the phenotypic parameters of the model. This represents the longest extension in survival for this severe model for any therapeutic intervention and suggests that postsymptomatic treatment of SMA may lead to significant improvement of disease severity.


Assuntos
Dependovirus/genética , Atrofia Muscular Espinal/terapia , Proteínas do Complexo SMN/genética , Animais , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteínas do Complexo SMN/metabolismo , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA