RESUMO
AIMS/HYPOTHESES: Glucagon and glucagon-like peptide-1 (GLP-1) are derived from the same precursor; proglucagon, and dual agonists of their receptors are currently being explored for the treatment of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). Elevated levels of endogenous glucagon (hyperglucagonaemia) have been linked with hyperglycaemia in individuals with type 2 diabetes but are also observed in individuals with obesity and MASLD. GLP-1 levels have been reported to be largely unaffected or even reduced in similar conditions. We investigated potential determinants of plasma proglucagon and associations of glucagon receptor signalling with metabolic diseases based on data from the UK Biobank. METHODS: We used exome sequencing data from the UK Biobank for ~410,000 white participants to identify glucagon receptor variants and grouped them based on their known or predicted signalling. Data on plasma levels of proglucagon estimated using Olink technology were available for a subset of the cohort (~40,000). We determined associations of glucagon receptor variants and proglucagon with BMI, type 2 diabetes and liver fat (quantified by liver MRI) and performed survival analyses to investigate if elevated proglucagon predicts type 2 diabetes development. RESULTS: Obesity, MASLD and type 2 diabetes were associated with elevated plasma levels of proglucagon independently of each other. Baseline proglucagon levels were associated with the risk of type 2 diabetes development over a 14 year follow-up period (HR 1.13; 95% CI 1.09, 1.17; n=1562; p=1.3×10-12). This association was of the same magnitude across strata of BMI. Carriers of glucagon receptor variants with reduced cAMP signalling had elevated levels of proglucagon (ß 0.847; 95% CI 0.04, 1.66; n=17; p=0.04), and carriers of variants with a predicted frameshift mutation had higher levels of liver fat compared with the wild-type reference group (ß 0.504; 95% CI 0.03, 0.98; n=11; p=0.04). CONCLUSIONS/INTERPRETATION: Our findings support the suggestion that glucagon receptor signalling is involved in MASLD, that plasma levels of proglucagon are linked to the risk of type 2 diabetes development, and that proglucagon levels are influenced by genetic variation in the glucagon receptor, obesity, type 2 diabetes and MASLD. Determining the molecular signalling pathways downstream of glucagon receptor activation may guide the development of biased GLP-1/glucagon co-agonist with improved metabolic benefits. DATA AVAILABILITY: All coding is available through https://github.com/nicwin98/UK-Biobank-GCG.
Assuntos
Bancos de Espécimes Biológicos , Diabetes Mellitus Tipo 2 , Obesidade , Proglucagon , Receptores de Glucagon , Transdução de Sinais , Humanos , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Reino Unido , Feminino , Proglucagon/metabolismo , Proglucagon/genética , Masculino , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Pessoa de Meia-Idade , Obesidade/sangue , Idoso , Adulto , Índice de Massa Corporal , Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Biobanco do Reino UnidoRESUMO
The underlying causes of diabetic kidney disease are still largely unknown. New insights into the contributing causes of diabetic nephropathy are important to prevent this complication. Hyperglycemia and hypertension are some of the risk factors for diabetic nephropathy. However, the incidence of diabetic nephropathy is increasing despite efforts to normalize blood glucose levels and blood pressure. Therefore, other factors should be investigated as causes of diabetic nephropathy. We investigated whether long-term increased plasma levels of glucagon contribute to the development of pathophysiological changes in kidney function as seen in patients with diabetic nephropathy. Using mouse models of chronic activation and inactivation of glucagon receptor signaling, we investigated whether glucagon is involved in changes in renal function, renal structure, and transcriptional changes. We found several histopathological changes in the kidney, such as thickening of the parietal layer of Bowman's capsule, glomerular mesangial cell expansion, and significant albuminuria in the mice with activated glucagon receptor signaling. Opposite effects on mesangial area expansion and the development of albuminuria were demonstrated in mice with glucagon receptor inactivation. RNA sequencing data revealed that transcription of genes related to fatty acid metabolism, podocytes, Na+-K+-ATPase, and sodium/glucose transport was significantly changed in mice with activated glucagon receptor signaling. These data implicate that glucagon receptor signaling is involved in the development of kidney injury, as seen in type 2 diabetes, and that glucagon receptor is a potential therapeutic target in the treatment of diabetes. NEW & NOTEWORTHY This study suggests that the glucagon receptor is a potential therapeutic target in the treatment of diabetic kidney disease. We show, in mice, that long-term treatment with a glucagon analog showed not only pathophysiological changes and changes in renal function but also transcriptional changes in the kidneys, whereas opposite effects were demonstrated in mice with glucagon receptor inactivation. Therefore, the use of glucagon in a treatment regimen requires investigation of possible metabolic and renal abnormalities.
Assuntos
Nefropatias Diabéticas , Glucagon , Rim , Receptores de Glucagon , Transdução de Sinais , Animais , Receptores de Glucagon/metabolismo , Receptores de Glucagon/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Rim/metabolismo , Rim/patologia , Glucagon/metabolismo , Glucagon/sangue , Masculino , Albuminúria/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Modelos Animais de DoençasRESUMO
Autoimmune liver diseases are associated with an increased risk of diabetes, yet the underlying mechanisms remain unknown. In this cross-sectional study, we investigated the glucose-regulatory disturbances in patients with autoimmune hepatitis (AIH, n = 19), primary biliary cholangitis (PBC, n = 15), and primary sclerosing cholangitis (PSC, n = 6). Healthy individuals (n = 24) and patients with metabolic dysfunction-associated steatotic liver disease (MASLD, n = 18) were included as controls. Blood samples were collected during a 120-min oral glucose tolerance test. We measured the concentrations of glucose, C-peptide, insulin, glucagon, and the two incretin hormones, glucose insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1). We calculated the homeostasis model assessment of insulin resistance (HOMA-IR), whole body insulin resistance (Matsuda index), insulin clearance, and insulinogenic index. All patient groups had increased fasting plasma glucose and impaired glucose responses compared with healthy controls. Beta-cell secretion was increased in AIH, PBC, and MASLD but not in PSC. Patients with AIH and MASLD had hyperglucagonemia and hepatic, as well as peripheral, insulin resistance and decreased insulin clearance, resulting in hyperinsulinemia. Patients with autoimmune liver disease had an increased GIP response, and those with AIH or PBC had an increased GLP-1 response. Our data demonstrate that the mechanism underlying glucose disturbances in patients with autoimmune liver disease differs from that underlying MASLD, including compensatory incretin responses in patients with autoimmune liver disease. Our results suggest that glucose disturbances are present at an early stage of the disease.NEW & NOTEWORTHY Patients with autoimmune liver disease but without overt diabetes display glucose disturbances early on in their disease course. We identified pathophysiological traits specific to these patients including altered incretin responses.
Assuntos
Glicemia , Hepatite Autoimune , Resistência à Insulina , Insulina , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Glicemia/metabolismo , Estudos Transversais , Adulto , Insulina/sangue , Hepatite Autoimune/sangue , Hepatite Autoimune/metabolismo , Hepatite Autoimune/complicações , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/sangue , Polipeptídeo Inibidor Gástrico/sangue , Polipeptídeo Inibidor Gástrico/metabolismo , Idoso , Teste de Tolerância a Glucose , Colangite Esclerosante/sangue , Colangite Esclerosante/metabolismo , Colangite Esclerosante/complicações , Glucagon/sangue , Glucagon/metabolismo , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/complicações , Peptídeo C/sangueRESUMO
Increased plasma concentrations of glucagon (hyperglucagonemia) are reported in patients with type 2 diabetes (T2D) and are considered a diabetogenic risk factor. Emerging evidence suggests that hepatic steatosis in obesity is causing a condition of resistance toward glucagon's effects on amino acid metabolism, resulting in an amino acid-induced hyperglucagonemia. We investigated the presence of hyperglucagonemia in individuals with biopsy-verified metabolic dysfunction-associated steatotic liver disease (MASLD), and whether body mass index (BMI), T2D, hepatic steatosis, and/or fibrosis contribute to this relationship. To dissect potential mechanisms, we also determined hepatic gene expression related to amino acid transport and catabolism. Individuals with MASLD had hyperglucagonemia {controls (n = 74) vs. MASLD (n = 106); median [Q1, Q3]; 4 [3, 7] vs. 8 [6, 13] pM), P < 0.0001} and were glucagon resistant (assessed by the glucagon-alanine index) {1.3 [0.9, 2.1] vs. 3.3 [2.1, 5.3] pM·mM, P < 0.0001}. These changes were associated with hepatic steatosis (P < 0.001, R2 > 0.25) independently of BMI, sex, age, and T2D. Plasma levels of glucagon were similar in individuals with MASLD when stratified on T2D status {MASLD-T2D (n = 52) vs. MASLD + T2D (n = 54); 8 [6, 11] vs. 8 [6, 13] pM, P = 0.34} and hepatic fibrosis {MASLD + F0 (n = 25) vs. MASLD + F1-F3 (n = 67); 8.4 [7.0, 13.3] vs. 7.9 [5.2, 11.6] pM, P = 0.43}. Obesity (BMI = 30 kg/m2) did not alter glucagon levels (P = 0.65) within groups (control/MASLD). The mRNA expression of proteins involved in amino acid transport and catabolism was downregulated in MASLD. Thus, relative hyperglucagonemia is present in individuals with biopsy-verified MASLD, and hepatic steatosis partially drives hyperglucagonemia and glucagon resistance, irrespective of T2D, BMI, and hepatic fibrosis.NEW & NOTEWORTHY Individuals with metabolic dysfunction-associated steatotic liver disease (MASLD) present with increased plasma levels of glucagon (hyperglucagonemia), irrespective of body mass index (BMI) and type 2 diabetes. Therefore, MASLD and the resultant hyperglucagonemia may act as a diabetogenic risk factor. Notably, hepatic steatosis was a significant contributor to the hyperglucagonemia in MASLD, potentially unveiling a pathway for the hyperglucagonemia in some patients with type 2 diabetes.
Assuntos
Índice de Massa Corporal , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Glucagon , Cirrose Hepática , Humanos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Glucagon/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Fígado Gorduroso/sangue , Cirrose Hepática/sangue , Obesidade/complicações , Obesidade/sangue , Fígado/metabolismo , Fígado/patologia , Idoso , Adulto , Aminoácidos/sangueRESUMO
AIM: To evaluate insulin and glucagon sensitivity in Han Chinese women with and without gestational diabetes mellitus (GDM). METHODS: In total, 81 women with GDM and 81 age-matched healthy controls were evaluated with a 75 g oral glucose tolerance test (OGTT) at gestational weeks 24-28. Plasma glucose concentrations were measured at fasting and 1 h and 2 h post-OGTT. Fasting plasma insulin, glucagon and amino acids were also measured. Insulin and glucagon sensitivity were assessed by the homeostatic model assessment of insulin resistance (HOMA-IR) and glucagon-alanine index, respectively. RESULTS: As expected, plasma glucose concentrations were higher at fasting and 1 h and 2 h post-OGTT in GDM participants (p < .001 each). Both the HOMA-IR and the glucagon-alanine index were higher in GDM participants. There was a weak positive correlation between HOMA-IR and glucagon-alanine index (r = 0.24, p = .0024). Combining the HOMA-IR and the glucagon-alanine index yielded better capacity (area under the curve = 0.878) than either alone (area under the curve = 0.828 for HOMA-IR and 0.751 for glucagon-alanine index, respectively) in differentiating GDM from healthy participants. While the majority of GDM participants (64%) exhibited both reduced insulin and glucagon sensitivity, a third of them presented either reduced insulin (20%) or glucagon (14%) sensitivity alone. HOMA-IR and glucagon-alanine index correlated differentially with fasting glucose, triglycerides, low-density lipoprotein cholesterol, sum of amino acids and hepatic steatosis index. CONCLUSIONS: Impairments of both insulin and glucagon sensitivity occur frequently in Chinese women with GDM, which may, individually or together, drive metabolic derangements in GDM. These observations provide new insights into the pathophysiology of GDM and support the need to target insulin or glucagon resistance, or both, in the management of GDM.
Assuntos
Glicemia , Diabetes Gestacional , Glucagon , Teste de Tolerância a Glucose , Resistência à Insulina , Insulina , Humanos , Feminino , Diabetes Gestacional/sangue , Diabetes Gestacional/metabolismo , Gravidez , Glucagon/sangue , Adulto , Glicemia/metabolismo , Glicemia/análise , Insulina/sangue , China/epidemiologia , Estudos de Casos e Controles , Jejum/sangue , Alanina/sangue , População do Leste AsiáticoRESUMO
BACKGROUND: Glucagon is secreted from pancreatic alpha cells in response to low blood glucose and increases hepatic glucose production. Furthermore, glucagon enhances hepatic protein and lipid metabolism during a mixed meal. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted from gut endocrine cells during meals and control glucose homeostasis by potentiating insulin secretion and inhibiting food intake. Both glucose homeostasis and food intake have been reported to be affected by circadian rhythms and vice versa. In this study, we investigated whether the secretion of glucagon, GLP-1 and GIP was affected by circadian rhythms. METHODS: A total of 24 healthy men with regular sleep schedules were examined for 24 h at the hospital ward with 15 h of wakefulness and 9 h of sleep. Food intake was standardized, and blood samples were obtained every third hour. Plasma concentrations of glucagon, GLP-1 and GIP were measured, and data were analyzed by rhythmometric statistical methods. Available data on plasma glucose and plasma C-peptide were also included. RESULTS: Plasma concentrations of glucagon, GLP-1, GIP, C-peptide and glucose fluctuated with a diurnal 24-h rhythm, with the highest levels during the day and the lowest levels during the night: glucagon (p < 0.0001, peak time 18:26 h), GLP-1 (p < 0.0001, peak time 17:28 h), GIP (p < 0.0001, peak time 18:01 h), C-peptide (p < 0.0001, peak time 17.59 h), and glucose (p < 0.0001, peak time 23:26 h). As expected, we found significant correlations between plasma concentrations of C-peptide and GLP-1 and GIP but did not find correlations between glucose concentrations and concentrations of glucagon, GLP-1 and GIP. CONCLUSIONS: Our results demonstrate that under meal conditions that are similar to that of many free-living individuals, plasma concentrations of glucagon, GLP-1 and GIP were observed to be higher during daytime and evening than overnight. These findings underpin disturbed circadian rhythm as a potential risk factor for diabetes and obesity. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT06166368. Registered 12 December 2023.
Assuntos
Peptídeo 1 Semelhante ao Glucagon , Glucagon , Masculino , Humanos , Glucagon/metabolismo , Insulina , Peptídeo C , Polipeptídeo Inibidor Gástrico , Glicemia/metabolismo , Glucose/farmacologia , Ritmo CircadianoRESUMO
Insulin and insulin-like growth factor 1 (IGF-1) receptors share many downstream signaling pathways but have unique biological effects. To define the molecular signals contributing to these distinct activities, we performed global phosphoproteomics on cells expressing either insulin receptor (IR), IGF-1 receptor (IGF1R), or chimeric IR-IGF1R receptors. We show that IR preferentially stimulates phosphorylations associated with mammalian target of rapamycin complex 1 (mTORC1) and Akt pathways, whereas IGF1R preferentially stimulates phosphorylations on proteins associated with the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases), and cell cycle progression. There were also major differences in the phosphoproteome between cells expressing IR versus IGF1R in the unstimulated state, including phosphorylation of proteins involved in membrane trafficking, chromatin remodeling, and cell cycle. In cells expressing chimeric IR-IGF1R receptors, these differences in signaling could be mapped to contributions of both the extra- and intracellular domains of these receptors. Thus, despite their high homology, IR and IGF1R preferentially regulate distinct networks of phosphorylation in both the basal and stimulated states, allowing for the unique effects of these hormones on organismal function.
Assuntos
Antígenos CD/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Adipócitos/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Feminino , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Camundongos , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
PURPOSE OF REVIEW: Glucagon increases hepatic glucose production and in patients with metabolic diseases, glucagon secretion is increased contributing to diabetic hyperglycemia. This review explores the role of amino acids and lipids in the regulation of glucagon secretion and how it may be disturbed in metabolic diseases such as obesity and metabolic associated fatty liver disease (MAFLD). RECENT FINDINGS: Human and animal studies have shown that MAFLD is associated with glucagon resistance towards amino acid catabolism, resulting in elevated plasma levels of amino acids. A recent clinical study showed that MAFLD is also associated with glucagon resistance towards lipid metabolism. In contrast, MAFLD may not decrease hepatic sensitivity to the stimulatory effects of glucagon on glucose production. SUMMARY: Elevated plasma levels of amino acids and lipids associated with MAFLD may cause diabetogenic hyperglucagonemia. MAFLD and glucagon resistance may therefore be causally linked to hyperglycemia and the development of type 2 diabetes.
Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Glucose/metabolismo , Glucagon/metabolismo , Aminoácidos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Retroalimentação , LipídeosRESUMO
The peptide hormone glucagon, discovered in late 1922, is secreted from pancreatic alpha cells and is an essential regulator of metabolic homeostasis. This review summarises experiences since the discovery of glucagon regarding basic and clinical aspects of this hormone and speculations on the future directions for glucagon biology and glucagon-based therapies. The review was based on the international glucagon conference, entitled 'A hundred years with glucagon and a hundred more', held in Copenhagen, Denmark, in November 2022. The scientific and therapeutic focus of glucagon biology has mainly been related to its role in diabetes. In type 1 diabetes, the glucose-raising properties of glucagon have been leveraged to therapeutically restore hypoglycaemia. The hyperglucagonaemia evident in type 2 diabetes has been proposed to contribute to hyperglycaemia, raising questions regarding underlying mechanism and the importance of this in the pathogenesis of diabetes. Mimicry experiments of glucagon signalling have fuelled the development of several pharmacological compounds including glucagon receptor (GCGR) antagonists, GCGR agonists and, more recently, dual and triple receptor agonists combining glucagon and incretin hormone receptor agonism. From these studies and from earlier observations in extreme cases of either glucagon deficiency or excess secretion, the physiological role of glucagon has expanded to also involve hepatic protein and lipid metabolism. The interplay between the pancreas and the liver, known as the liver-alpha cell axis, reflects the importance of glucagon for glucose, amino acid and lipid metabolism. In individuals with diabetes and fatty liver diseases, glucagon's hepatic actions may be partly impaired resulting in elevated levels of glucagonotropic amino acids, dyslipidaemia and hyperglucagonaemia, reflecting a new, so far largely unexplored pathophysiological phenomenon termed 'glucagon resistance'. Importantly, the hyperglucagonaemia as part of glucagon resistance may result in increased hepatic glucose production and hyperglycaemia. Emerging glucagon-based therapies show a beneficial impact on weight loss and fatty liver diseases and this has sparked a renewed interest in glucagon biology to enable further pharmacological pursuits.
Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Hepatopatia Gordurosa não Alcoólica , Humanos , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Hiperglicemia/metabolismo , AminoácidosRESUMO
Naturally occurring missense variants of G protein-coupled receptors with loss of function have been linked to metabolic disease in case studies and in animal experiments. The glucagon receptor, one such G protein-coupled receptor, is involved in maintaining blood glucose and amino acid homeostasis; however, loss-of-function mutations of this receptor have not been systematically characterized. Here, we observed fewer glucagon receptor missense variants than expected, as well as lower allele diversity and fewer variants with trait associations as compared with other class B1 receptors. We performed molecular pharmacological phenotyping of 38 missense variants located in the receptor extracellular domain, at the glucagon interface, or with previously suggested clinical implications. These variants were characterized in terms of cAMP accumulation to assess glucagon-induced Gαs coupling, and of recruitment of ß-arrestin-1/2. Fifteen variants were impaired in at least one of these downstream functions, with six variants affected in both cAMP accumulation and ß-arrestin-1/2 recruitment. For the eight variants with decreased Gαs signaling (D63ECDN, P86ECDS, V96ECDE, G125ECDC, R2253.30H, R3085.40W, V3686.59M, and R3787.35C) binding experiments revealed preserved glucagon affinity, although with significantly reduced binding capacity. Finally, using the UK Biobank, we found that variants with wildtype-like Gαs signaling did not associate with metabolic phenotypes, whereas carriers of cAMP accumulation-impairing variants displayed a tendency toward increased risk of obesity and increased body mass and blood pressure. These observations are in line with the essential role of the glucagon system in metabolism and support that Gαs is the main signaling pathway effecting the physiological roles of the glucagon receptor.
Assuntos
Receptores de Glucagon , Animais , Glucagon/metabolismo , Humanos , Mutação de Sentido Incorreto , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glucagon/química , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Transdução de Sinais , beta-Arrestina 2/metabolismoRESUMO
Deeper understanding of liver pathophysiology would benefit from a comprehensive quantitative proteome resource at cell type resolution to predict outcome and design therapy. Here, we quantify more than 150,000 sequence-unique peptides aggregated into 10,000 proteins across total liver, the major liver cell types, time course of primary cell cultures, and liver disease states. Bioinformatic analysis reveals that half of hepatocyte protein mass is comprised of enzymes and 23% of mitochondrial proteins, twice the proportion of other liver cell types. Using primary cell cultures, we capture dynamic proteome remodeling from tissue states to cell line states, providing useful information for biological or pharmaceutical research. Our extensive data serve as spectral library to characterize a human cohort of non-alcoholic steatohepatitis and cirrhosis. Dramatic proteome changes in liver tissue include signatures of hepatic stellate cell activation resembling liver cirrhosis and providing functional insights. We built a web-based dashboard application for the interactive exploration of our resource (www.liverproteome.org).
Assuntos
Hepatopatia Gordurosa não Alcoólica , Proteoma , Humanos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteoma/metabolismo , ProteômicaRESUMO
BACKGROUND AND AIMS: Patients with some chronic liver diseases have increased risk of diabetes. Whether this is also the case for patients with autoimmune liver diseases is unknown. The study aimed to calculate risk and worldwide prevalence of diabetes in patients with autoimmune hepatitis (AIH), primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). METHODS: We performed a case-control study using data from the United Kingdom Biobank (UKB) and compared frequency of type 1 diabetes (T1D) and type 2 diabetes (T2D) in AIH and PBC with age-, sex-, BMI- and ethnicity-matched controls. Next, we performed a systematic review and proportional meta-analysis searching PubMed, Embase, Cochrane Library and Web of Science (inception to 1 May 2022 [AIH]; 20 August 2022 [PBC]; 11 November 2022 [PSC]). The pooled prevalence of diabetes was calculated using an inverse method random effects model. RESULTS: Three hundred twenty-eight AIH patients and 345 PBC patients were identified in UKB and risk of T1D and T2D significantly increased compared with matched controls. Our systematic search identified 6914 records including the UKB study. Of these, 77 studies were eligible for inclusion comprising 36 467, 39 924 and 4877 individuals with AIH, PBC and PSC, respectively. The pooled prevalence of T1D was 3.8% (2.6%-5.7%), 1.7% (0.9%-3.1%), 3.1% (1.9%-4.8%) and of T2D 14.8% (11.1%-19.5%), 18.1% (14.6%-22.2%), 6.3% (2.8%-13.3%) in patients with AIH, PBC and PSC, respectively. CONCLUSIONS: Patients with autoimmune liver diseases have increased risk of diabetes. Increased awareness of diabetes risk in patients with autoimmune liver diseases is warranted.
Assuntos
Doenças Autoimunes , Colangite Esclerosante , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hepatite Autoimune , Cirrose Hepática Biliar , Hepatopatias , Humanos , Cirrose Hepática Biliar/epidemiologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Estudos de Casos e Controles , Pontuação de Propensão , Hepatopatias/epidemiologia , Doenças Autoimunes/complicações , Doenças Autoimunes/epidemiologia , Hepatite Autoimune/complicações , Hepatite Autoimune/epidemiologia , Colangite Esclerosante/complicações , Colangite Esclerosante/epidemiologiaRESUMO
BACKGROUND AND AIMS: Modulation of the gut microbiome composition with probiotics may have beneficial metabolic effects in pregnant women with obesity. The aim was to investigate the effect of probiotic supplementation during pregnancy on metabolic and inflammatory markers and the body composition of the offspring. METHODS AND RESULTS: A randomized double-blind trial in 50 pregnant women (pre-pregnancy BMI ≥30 and < 35 kg/m2) comparing multi-strain probiotics (Vivomixx®; 450 billion CFU/d) versus placebo from 14 to 20 weeks of gestation until delivery was carried out. Participants were followed with two predelivery visits at gestational week 27-30 and 36-37 and with one postdelivery visit. All visits included fasting blood samples (C-reactive protein (CRP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), insulin, C-peptide, glucose, glucagon, and glucagon-like peptide-1 (GLP-1)). At delivery, umbilical cord blood samples were collected (GLP-1 and glucagon). At the postdelivery visit, a dual-energy X-ray absorptiometry (DXA) scan of the newborn was performed. Forty-nine of 50 participants completed the study until delivery, and 36 mother-offspring dyads underwent postdelivery examinations including a DXA scan. There were no significant differences in changes in measured biomarkers between the probiotic versus the placebo group. No differences were found in newborn body composition or GLP-1 and glucagon. GLP-1 measured in umbilical blood samples was positively correlated to fat percent in offspring from the probiotic group. CONCLUSION: In this study of pregnant women with obesity and their newborns, there was no effect of probiotic supplementation in mothers or babies on metabolic or inflammatory biomarkers or on body composition of offspring. This study was registered at clinicaltrials.gov as NCT02508844.
Assuntos
Gestantes , Probióticos , Gravidez , Recém-Nascido , Feminino , Humanos , Glucagon , Obesidade/diagnóstico , Obesidade/terapia , Probióticos/efeitos adversos , Composição Corporal , Biomarcadores , Peptídeo 1 Semelhante ao Glucagon , Método Duplo-CegoRESUMO
BACKGROUND: Plasma concentrations of glucagon, GLP-1 and GIP are reported in numerous clinical trials as outcome measures but preanalytical guidelines are lacking. We addressed the impact of commonly used blood containers in metabolic research on measurements of glucagon, GLP-1 and GIP in humans. METHODS: Seventeen overweight individuals were subjected to an overnight fast followed by an intravenous infusion of amino acids to stimulate hormonal secretion. Blood was sampled into five containers: EDTA-coated tubes supplemented with DMSO (control), a neprilysin inhibitor, aprotinin (a kallikrein inhibitor) or a DPP-4 inhibitor, and P800 tubes. Plasma was kept on ice before and after centrifugation and stored at -80 Celsius until batch analysis using validated sandwich ELISAs or radioimmunoassays (RIA). RESULTS: Measures of fasting plasma glucagon did not depend on sampling containers, whether measured by ELISA or RIA. Amino acid-induced hyperglucagonemia was numerically higher when blood was collected into P800 tubes or tubes with aprotinin. The use of p800 tubes resulted in higher concentrations of GLP-1 by RIA compared to control tubes but not for measurements with sandwich ELISA. Plasma concentrations of GIP measured by ELISA were higher in control tubes and negatively affected by P800 and the addition of aprotinin. CONCLUSIONS: The choice of blood containers impacts on measurements of plasma concentrations of glucagon, GLP-1 and GIP, and based on this study, we recommend using EDTA-coated tubes without protease inhibitors or P800 tubes for measurements of glucagon, GLP-1 and GIP in clinical trials.
Assuntos
Peptídeo 1 Semelhante ao Glucagon , Glucagon , Humanos , Glucagon/metabolismo , Aprotinina , Ácido Edético , Polipeptídeo Inibidor Gástrico/metabolismo , Glicemia/análise , Insulina , Fragmentos de PeptídeosRESUMO
Amino acids stimulate the secretion of glucagon, and glucagon receptor signaling regulates amino acid catabolism via ureagenesis, together constituting the liver-α cell axis. Impairment of the liver-α cell axis is observed in metabolic diseases such as diabetes. It is, however, unknown whether glucose affects the liver-α cell axis. We investigated the role of glucose on the liver-α cell axis in vivo and ex vivo. The isolated perfused mouse pancreas was used to evaluate the direct effect of low (3.5 mmol/L) and high (15 mmol/L) glucose levels on amino acid (10 mmol/L arginine)-induced glucagon secretion. High glucose levels alone lowered glucagon secretion, but the amino acid-induced glucagon responses were similar in high and low glucose conditions (P = 0.38). The direct effect of glucose on glucagon and amino acid-induced ureagenesis was assessed using isolated perfused mouse livers stimulated with a mixture of amino acids (VaminR, 10 mmol/L) and glucagon (10 nmol/L) during high and low glucose conditions. Urea production increased robustly but was independent of glucose levels (P = 0.95). To investigate the whole body effects of glucose on the liver-α cell axis, four groups of mice received intraperitoneal injections of glucose-Vamin (2 g/kg, + 3.5 µmol/g, respectively, G/V), saline-Vamin (S/V), glucose-saline (G/S), or saline-saline (S/S). Blood glucose did not differ significantly between G/S and G/V groups. Levels of glucagon and amino acids were similar in the G/V and S/V groups (P = 0.28). Amino acids may overrule the inhibitory effect of glucose on glucagon secretion and the liver-α cell axis may operate independently of glucose in mice.NEW & NOTEWORTHY Glucagon is an essential regulator of our metabolism. Recent evidence suggests that the physiological actions of glucagon reside in amino acid catabolism in the so-called liver-α cell axis, in which amino acids stimulate glucagon secretion and glucagon enhances hepatic amino acid catabolism. Here, it is demonstrated that this feedback system is independent of glycemia possibly explaining why hyperglycemia in diabetes may not suppress α cell secretion.
Assuntos
Arginina , Glicemia , Células Secretoras de Glucagon , Glucagon , Aminoácidos/biossíntese , Animais , Arginina/metabolismo , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Insulina , Camundongos , UreiaRESUMO
We investigated the effect of pharmacologically induced weight loss on markers of glucagon resistance in individuals with overweight during treatment with the glucagon-like peptide-1 receptor agonist liraglutide. We performed an open-label study in 14 men with overweight (age 38 ± 11 years, BMI 32 ± 4 kg/m2) without simultaneously diabetes. Subjects were treated with liraglutide, initiated and titrated with 0.6 mg/day/week to reach the final dose of 3.0 mg/day. Subjects were examined at baseline, during titration (Week 4), after 2 weeks of steady state (Week 6) of final dosing of liraglutide and 3 weeks after discontinuation of liraglutide (follow-up). Study participants lost 3.3 ± 1.9 kg (3%) total body weight during the first 4 weeks of treatment with liraglutide. Simultaneously, liver fat content decreased from 12.4 ± 11.6% to 10.2 ± 11.1%, p = 0.025, whereas fat content in the spleen and subcutaneous tissue was unaltered. Markers of glucagon resistance, including plasma glucagon and the glucagon-alanine-index, also decreased significantly during treatment, but total and individual plasma amino acid concentrations did not. Insulin resistance (HOMA-IR) was unchanged during treatment, whereas insulin clearance increased. Treatment with the GLP-1 receptor analogue liraglutide decreased liver fat content, and simultaneously attenuated glucagon concentrations and the glucagon-alanine index in individuals with overweight without diabetes.
Assuntos
Diabetes Mellitus Tipo 2 , Liraglutida , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Glucagon , Sobrepeso/tratamento farmacológico , Sobrepeso/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Fígado/metabolismo , Alanina/uso terapêutico , AminoácidosRESUMO
BACKGROUND: C-type natriuretic peptide (CNP) is a cardioprotective peptide with high affinity for the ectoenzyme neutral endopeptidase (neprilysin). We aimed to determine whether angiotensin receptor-neprilysin inhibitor treatment acutely affects circulating concentrations of bioactive CNP and its molecular amino-terminal precursor (NT-proCNP). METHODS: We included 9 and 10 healthy young men in 2 randomized crossover trials with sacubitril/valsartan vs control (Trial 1) and sacubitril/valsartan and sitagliptin vs sitagliptin (Trial 2). The participants were randomized to a single dose of sacubitril/valsartan (194/206 mg) or control at the first visit 30 min prior to a standardized meal intake. We obtained blood samples at 12 time points over 5 h and measured plasma concentrations of NT-proCNP in both trials and CNP in Trial 2. RESULTS: NT-proCNP concentrations increased 3.5 h after sacubitril/valsartan treatment, and at 4.5 h concentrations were 42% and 65% higher compared with control in Trial 1 and Trial 2, respectively. The total area under the curve (tAUC)15-270 min was 22% higher (P = 0.007) in Trial 1 and 17% higher with treatment (P = 0.017) in Trial 2. Concentrations of bioactive CNP followed a similar temporal pattern with an increase of 93% at 4.5 h and a 31% higher tAUC15-270 min compared with control (P = 0.001) in Trial 2. CONCLUSIONS: Sacubitril/valsartan augments circulating concentrations of both bioactive CNP and NT-proCNP in healthy young men. The increase in bioactive CNP is most likely caused by de novo synthesis and secretion rather than diminished breakdown through neprilysin inhibition.ClinicalTrials.gov registration number NCT03717688.
Assuntos
Insuficiência Cardíaca , Neprilisina , Aminobutiratos/farmacologia , Aminobutiratos/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Compostos de Bifenilo , Humanos , Masculino , Peptídeo Natriurético Encefálico , Peptídeo Natriurético Tipo C , Fragmentos de Peptídeos , Fosfato de Sitagliptina/uso terapêutico , Tetrazóis/uso terapêutico , Valsartana/uso terapêuticoRESUMO
AIMS: Sacubitril/valsartan is a neprilysin-inhibitor/angiotensin II receptor blocker used for the treatment of heart failure. Recently, a post-hoc analysis of a 3-year randomized controlled trial showed improved glycaemic control with sacubitril/valsartan in patients with heart failure and type 2 diabetes. We previously reported that sacubitril/valsartan combined with a dipeptidyl peptidase-4 inhibitor increases active glucagon-like peptide-1 (GLP-1) in healthy individuals. We now hypothesized that administration of sacubitril/valsartan with or without a dipeptidyl peptidase-4 inhibitor would lower postprandial glucose concentrations (primary outcome) in patients with type 2 diabetes via increased active GLP-1. METHODS: We performed a crossover trial in 12 patients with obesity and type 2 diabetes. A mixed meal was ingested following five respective interventions: (a) a single dose of sacubitril/valsartan; (b) sitagliptin; (c) sacubitril/valsartan + sitagliptin; (d) control (no treatment); and (e) valsartan alone. Glucose, gut and pancreatic hormone responses were measured. RESULTS: Postprandial plasma glucose increased by 57% (incremental area under the curve 0-240 min) (p = .0003) and increased peak plasma glucose by 1.7 mM (95% CI: 0.6-2.9) (p = .003) after sacubitril/valsartan compared with control, whereas postprandial glucose levels did not change significantly after sacubitril/valsartan + sitagliptin. Glucagon, GLP-1 and C-peptide concentrations increased after sacubitril/valsartan, but insulin and glucose-dependent insulinotropic polypeptide did not change. CONCLUSIONS: The glucose-lowering effects of long-term sacubitril/valsartan treatment reported in patients with heart failure and type 2 diabetes may not depend on changes in entero-pancreatic hormones. Neprilysin inhibition results in hyperglucagonaemia and this may explain the worsen glucose tolerance observed in this study. CLINICALTRIALS: gov (NCT03893526).
Assuntos
Aminobutiratos , Antagonistas de Receptores de Angiotensina , Compostos de Bifenilo , Glicemia , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Hipoglicemiantes , Neprilisina , Valsartana , Idoso , Aminobutiratos/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Glicemia/análise , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Combinação de Medicamentos , Peptídeo 1 Semelhante ao Glucagon/sangue , Teste de Tolerância a Glucose , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Pessoa de Meia-Idade , Neprilisina/antagonistas & inibidores , Fosfato de Sitagliptina/uso terapêutico , Tetrazóis/uso terapêutico , Valsartana/uso terapêuticoRESUMO
OBJECTIVES: Walled-off necrosis (WON) is a serious complication to necrotizing acute pancreatitis with a high morbidity and mortality. The aim of this study was to investigate the long-term changes in pancreatic function, metabolic function and body composition in patients with WON. MATERIAL AND METHODS: Observational study including patients with WON who underwent endoscopic transmural drainage and necrosectomy. Patients were prospectively evaluated at baseline, 3-6 months after discharge, and 12 months after discharge. Patients were characterized with fecal elastase, blood samples, computer tomography, dual energy X-ray absorptiometry and Lundh's test. RESULTS: The study includes 17 patients (11 men) with WON. The etiologies were gallstones (53%) alcohol intake (35%) and 12% had an unknown etiology. The body mass index (BMI) dropped during baseline and 3 months after discharge (p = .03) and increased 12 months after discharge (p = .002). Twelve months after discharge, 29% had mild exocrine insufficiency, 7% moderate insufficiency and 50% severe insufficiency based on the Lundh's test. Fecal elastase was <100 µg/g in 35% and <200 µg/g in 59% 12 months after discharge. Only, 24% required pancreatic enzyme substitution. Endocrine insufficiency developed in 24%. These patients also had exocrine insufficiency. CONCLUSIONS: A considerable proportion of patients with WON experience both endocrine and exocrine pancreatic insufficiency suggesting that long-term follow-up is needed in order to ensure adequate treatment.
Assuntos
Pancreatite Necrosante Aguda , Doença Aguda , Drenagem/métodos , Feminino , Humanos , Masculino , Necrose , Elastase Pancreática , Pancreatite Necrosante Aguda/diagnóstico por imagem , Pancreatite Necrosante Aguda/cirurgia , Estudos Retrospectivos , Resultado do TratamentoRESUMO
Glucagon is a key regulator of metabolism and is used in the diagnostic of neuroendocrine tumors. Accurate measurement of glucagon requires both extreme sensitivity and specificity since several peptides are derived from the same proglucagon precursor encoding part of the glucagon sequence and given that glucagon circulates in picomolar concentrations. A sandwich ELISA was recently developed and extensively evaluated; however, this method may not be accurate when measuring glucagon in patients with an enhanced production of proglucagon-derived peptides as seen after Roux-en-Y gastric bypass (RYGB). To overcome this, a modified version of the ELISA was developed. In this study, we evaluate an unmodified and a modified version of the ELISA in healthy individuals, individuals with obesity, and finally in two cohorts of patients following RYGB surgery using different nutrient stimuli to assess glucagon dynamics. Finally, in vitro spike-in recoveries using native glucagon and proglucagon-derived peptides were performed in buffer and in plasma. Our data support that both versions of the ELISA accurately capture endogenous and exogenous glucagon in healthy individuals and in individuals with obesity. However, the unmodified version of the assay may overestimate glucagon levels in patients following RYGB in line with minimal but consistent cross-reactivity to oxyntomodulin and glicentin that both are 50-fold increased after RYGB. Importantly, we did not find any changes between the two protocols at fasted conditions and therefore diagnostics of glucagonomas is not affected by the choice of assay procedure nor the surgical history of the patient (RYGB).