Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 32(10): 1536-43, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26794319

RESUMO

MOTIVATION: Capabilities in the field of metabolomics have grown tremendously in recent years. Many existing resources contain the chemical properties and classifications of commonly identified metabolites. However, the annotation of small molecules (both endogenous and synthetic) to meaningful biological pathways and concepts still lags behind the analytical capabilities and the chemistry-based annotations. Furthermore, no tools are available to visually explore relationships and networks among functionally related groups of metabolites (biomedical concepts). Such a tool would provide the ability to establish testable hypotheses regarding links among metabolic pathways, cellular processes, phenotypes and diseases. RESULTS: Here we present ConceptMetab, an interactive web-based tool for mapping and exploring the relationships among 16 069 biologically defined metabolite sets developed from Gene Ontology, KEGG and Medical Subject Headings, using both KEGG and PubChem compound identifiers, and based on statistical tests for association. We demonstrate the utility of ConceptMetab with multiple scenarios, showing it can be used to identify known and potentially novel relationships among metabolic pathways, cellular processes, phenotypes and diseases, and provides an intuitive interface for linking compounds to their molecular functions and higher level biological effects. AVAILABILITY AND IMPLEMENTATION: http://conceptmetab.med.umich.edu CONTACTS: akarnovsky@umich.edu or sartorma@umich.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metabolômica , Software , Conjuntos de Dados como Assunto , Humanos , Redes e Vias Metabólicas , Estatística como Assunto , Vocabulário Controlado
2.
Nucleic Acids Res ; 42(13): e105, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24878920

RESUMO

Gene set enrichment testing can enhance the biological interpretation of ChIP-seq data. Here, we develop a method, ChIP-Enrich, for this analysis which empirically adjusts for gene locus length (the length of the gene body and its surrounding non-coding sequence). Adjustment for gene locus length is necessary because it is often positively associated with the presence of one or more peaks and because many biologically defined gene sets have an excess of genes with longer or shorter gene locus lengths. Unlike alternative methods, ChIP-Enrich can account for the wide range of gene locus length-to-peak presence relationships (observed in ENCODE ChIP-seq data sets). We show that ChIP-Enrich has a well-calibrated type I error rate using permuted ENCODE ChIP-seq data sets; in contrast, two commonly used gene set enrichment methods, Fisher's exact test and the binomial test implemented in Genomic Regions Enrichment of Annotations Tool (GREAT), can have highly inflated type I error rates and biases in ranking. We identify DNA-binding proteins, including CTCF, JunD and glucocorticoid receptor α (GRα), that show different enrichment patterns for peaks closer to versus further from transcription start sites. We also identify known and potential new biological functions of GRα. ChIP-Enrich is available as a web interface (http://chip-enrich.med.umich.edu) and Bioconductor package.


Assuntos
Imunoprecipitação da Cromatina/métodos , Genes , Loci Gênicos , Análise de Sequência de DNA/métodos , Proteínas de Ligação a DNA/análise , Modelos Logísticos , Receptores de Glucocorticoides/análise
3.
Bioinformatics ; 26(7): 971-3, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20139469

RESUMO

SUMMARY: Metscape is a plug-in for Cytoscape, used to visualize and interpret metabolomic data in the context of human metabolic networks. We have developed a metabolite database by extracting and integrating information from several public sources. By querying this database, Metscape allows users to trace the connections between metabolites and genes, visualize compound networks and display compound structures as well as information for reactions, enzymes, genes and pathways. Applying the pathway filter, users can create subnetworks that consist of compounds and reactions from a given pathway. Metscape allows users to upload experimental data, and visualize and explore compound networks over time, or experimental conditions. Color and size of the nodes are used to visualize these dynamic changes. Metscape can display the entire metabolic network or any of the pathway-specific networks that exist in the database. AVAILABILITY: Metscape can be installed from within Cytoscape 2.6.x under 'Network and Attribute I/O' category. For more information, please visit http://metscape.ncibi.org/tryplugin.html.


Assuntos
Redes e Vias Metabólicas , Metabolômica/métodos , Software , Bases de Dados Factuais , Humanos
4.
Bioinformatics ; 25(1): 137-8, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18812364

RESUMO

UNLABELLED: The MiMI molecular interaction repository integrates data from multiple sources, resolves interactions to standard gene names and symbols, links to annotation data from GO, MeSH and PubMed and normalizes the descriptions of interaction type. Here, we describe a Cytoscape plugin that retrieves interaction and annotation data from MiMI and links out to multiple data sources and tools. Community annotation of the interactome is supported. AVAILABILITY: MiMI plugin v3.0.1 can be installed from within Cytoscape 2.6 using the Cytoscape plugin manager in 'Network and Attribute I/0' category. The plugin is also preloaded when Cytoscape is launched using Java WebStart at http://mimi.ncibi.org by querying a gene and clicking 'View in MiMI Plugin for Cytoscape' link.


Assuntos
Biologia Computacional/métodos , Software , Bases de Dados Genéticas , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA