Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nucleic Acids Res ; 44(D1): D81-9, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26612867

RESUMO

Repetitive DNA, especially that due to transposable elements (TEs), makes up a large fraction of many genomes. Dfam is an open access database of families of repetitive DNA elements, in which each family is represented by a multiple sequence alignment and a profile hidden Markov model (HMM). The initial release of Dfam, featured in the 2013 NAR Database Issue, contained 1143 families of repetitive elements found in humans, and was used to produce more than 100 Mb of additional annotation of TE-derived regions in the human genome, with improved speed. Here, we describe recent advances, most notably expansion to 4150 total families including a comprehensive set of known repeat families from four new organisms (mouse, zebrafish, fly and nematode). We describe improvements to coverage, and to our methods for identifying and reducing false annotation. We also describe updates to the website interface. The Dfam website has moved to http://dfam.org. Seed alignments, profile HMMs, hit lists and other underlying data are available for download.


Assuntos
Elementos de DNA Transponíveis , DNA/química , Bases de Dados de Ácidos Nucleicos , Sequências Repetitivas de Ácido Nucleico , Animais , DNA/classificação , Genoma , Humanos , Internet , Cadeias de Markov , Camundongos , Anotação de Sequência Molecular , Alinhamento de Sequência
2.
Nucleic Acids Res ; 43(W1): W30-8, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25943547

RESUMO

The HMMER website, available at http://www.ebi.ac.uk/Tools/hmmer/, provides access to the protein homology search algorithms found in the HMMER software suite. Since the first release of the website in 2011, the search repertoire has been expanded to include the iterative search algorithm, jackhmmer. The continued growth of the target sequence databases means that traditional tabular representations of significant sequence hits can be overwhelming to the user. Consequently, additional ways of presenting homology search results have been developed, allowing them to be summarised according to taxonomic distribution or domain architecture. The taxonomy and domain architecture representations can be used in combination to filter the results according to the needs of a user. Searches can also be restricted prior to submission using a new taxonomic filter, which not only ensures that the results are specific to the requested taxonomic group, but also improves search performance. The repertoire of profile hidden Markov model libraries, which are used for annotation of query sequences with protein families and domains, has been expanded to include the libraries from CATH-Gene3D, PIRSF, Superfamily and TIGRFAMs. Finally, we discuss the relocation of the HMMER webserver to the European Bioinformatics Institute and the potential impact that this will have.


Assuntos
Homologia de Sequência de Aminoácidos , Software , Algoritmos , Bases de Dados de Proteínas , Internet , Cadeias de Markov , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína
3.
Nucleic Acids Res ; 41(Database issue): D70-82, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23203985

RESUMO

We present a database of repetitive DNA elements, called Dfam (http://dfam.janelia.org). Many genomes contain a large fraction of repetitive DNA, much of which is made up of remnants of transposable elements (TEs). Accurate annotation of TEs enables research into their biology and can shed light on the evolutionary processes that shape genomes. Identification and masking of TEs can also greatly simplify many downstream genome annotation and sequence analysis tasks. The commonly used TE annotation tools RepeatMasker and Censor depend on sequence homology search tools such as cross_match and BLAST variants, as well as Repbase, a collection of known TE families each represented by a single consensus sequence. Dfam contains entries corresponding to all Repbase TE entries for which instances have been found in the human genome. Each Dfam entry is represented by a profile hidden Markov model, built from alignments generated using RepeatMasker and Repbase. When used in conjunction with the hidden Markov model search tool nhmmer, Dfam produces a 2.9% increase in coverage over consensus sequence search methods on a large human benchmark, while maintaining low false discovery rates, and coverage of the full human genome is 54.5%. The website provides a collection of tools and data views to support improved TE curation and annotation efforts. Dfam is also available for download in flat file format or in the form of MySQL table dumps.


Assuntos
Elementos de DNA Transponíveis , Bases de Dados de Ácidos Nucleicos , Genoma Humano , Humanos , Internet , Cadeias de Markov , Modelos Estatísticos , Anotação de Sequência Molecular
4.
BMC Bioinformatics ; 15: 7, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24410852

RESUMO

BACKGROUND: Logos are commonly used in molecular biology to provide a compact graphical representation of the conservation pattern of a set of sequences. They render the information contained in sequence alignments or profile hidden Markov models by drawing a stack of letters for each position, where the height of the stack corresponds to the conservation at that position, and the height of each letter within a stack depends on the frequency of that letter at that position. RESULTS: We present a new tool and web server, called Skylign, which provides a unified framework for creating logos for both sequence alignments and profile hidden Markov models. In addition to static image files, Skylign creates a novel interactive logo plot for inclusion in web pages. These interactive logos enable scrolling, zooming, and inspection of underlying values. Skylign can avoid sampling bias in sequence alignments by down-weighting redundant sequences and by combining observed counts with informed priors. It also simplifies the representation of gap parameters, and can optionally scale letter heights based on alternate calculations of the conservation of a position. CONCLUSION: Skylign is available as a website, a scriptable web service with a RESTful interface, and as a software package for download. Skylign's interactive logos are easily incorporated into a web page with just a few lines of HTML markup. Skylign may be found at http://skylign.org.


Assuntos
Biologia Computacional/métodos , Internet , Alinhamento de Sequência/métodos , Análise de Sequência/métodos , Software , Sequência de Aminoácidos , Sequência de Bases , Gráficos por Computador , DNA/química , Dados de Sequência Molecular
5.
Bioinformatics ; 29(19): 2487-9, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23842809

RESUMO

SUMMARY: Sequence database searches are an essential part of molecular biology, providing information about the function and evolutionary history of proteins, RNA molecules and DNA sequence elements. We present a tool for DNA/DNA sequence comparison that is built on the HMMER framework, which applies probabilistic inference methods based on hidden Markov models to the problem of homology search. This tool, called nhmmer, enables improved detection of remote DNA homologs, and has been used in combination with Dfam and RepeatMasker to improve annotation of transposable elements in the human genome. AVAILABILITY: nhmmer is a part of the new HMMER3.1 release. Source code and documentation can be downloaded from http://hmmer.org. HMMER3.1 is freely licensed under the GNU GPLv3 and should be portable to any POSIX-compliant operating system, including Linux and Mac OS/X.


Assuntos
DNA/análise , Homologia de Sequência do Ácido Nucleico , Software , Algoritmos , Elementos de DNA Transponíveis , Genoma Humano , Humanos , Cadeias de Markov , Probabilidade , Alinhamento de Sequência
6.
bioRxiv ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38895435

RESUMO

In the age of long read sequencing, genomics researchers now have access to accurate repetitive DNA sequence (including satellites) that, due to the limitations of short read sequencing, could previously be observed only as unmappable fragments. Tools that annotate repetitive sequence are now more important than ever, so that we can better understand newly uncovered repetitive sequences, and also so that we can mitigate errors in bioinformatic software caused by those repetitive sequences. To that end, we introduce the 1.0 release of our tool for identifying and annotating locally-repetitive sequence, ULTRA (ULTRA Locates Tandemly Repetitive Areas). ULTRA is fast enough to use as part of an efficient annotation pipeline, produces state-of-the-art reliable coverage of repetitive regions containing many mutations, and provides interpretable statistics and labels for repetitive regions. It released under an open license, and available for download at https://github.com/TravisWheelerLab/ULTRA.

7.
bioRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38746152

RESUMO

Background: Eukaryotic genes are often composed of multiple exons that are stitched together by splicing out the intervening introns. These exons may be conditionally joined in different combinations to produce a collection of related, but distinct, mRNA transcripts. For protein-coding genes, these products of alternative splicing lead to production of related protein variants (isoforms) of a gene. Complete labeling of the protein-coding content of a eukaryotic genome requires discovery of mRNA encoding all isoforms, but it is impractical to enumerate all possible combinations of tissue, developmental stage, and environmental context; as a result, many true exons go unlabeled in genome annotations. Results: One way to address the combinatoric challenge of finding all isoforms in a single organism A is to leverage sequencing efforts for other organisms - each time a new organism is sequenced, it may be under a new combination of conditions, so that a previously unobserved isoform may be sequenced. We present Diviner, a software tool that identifies previously undocumented exons in organisms by comparing isoforms across species. We demonstrate Diviner's utility by locating hundreds of novel exons in the genomes of human, mouse, and rat, as well as in the ferret genome. Further, we provide analyses supporting the notion that most of the new exons reported by Diviner are likely to be part of a true (but unobserved) isoform of the containing species.

8.
Bioinform Adv ; 4(1): vbae052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764475

RESUMO

Background: Software for labeling biological sequences typically produces a theory-based statistic for each match (the E-value) that indicates the likelihood of seeing that match's score by chance. E-values accurately predict false match rate for comparisons of random (shuffled) sequences, and thus provide a reasoned mechanism for setting score thresholds that enable high sensitivity with low expected false match rate. This threshold-setting strategy is challenged by real biological sequences, which contain regions of local repetition and low sequence complexity that cause excess matches between non-homologous sequences. Knowing this, tool developers often develop benchmarks that use realistic-seeming decoy sequences to explore empirical tradeoffs between sensitivity and false match rate. A recent trend has been to employ reversed biological sequences as realistic decoys, because these preserve the distribution of letters and the existence of local repeats, while disrupting the original sequence's functional properties. However, we and others have observed that sequences appear to produce high scoring alignments to their reversals with surprising frequency, leading to overstatement of false match risk that may negatively affect downstream analysis. Results: We demonstrate that an alignment between a sequence S and its (possibly mutated) reversal tends to produce higher scores than alignment between truly unrelated sequences, even when S is a shuffled string with no notable repetitive or low-complexity regions. This phenomenon is due to the unintuitive fact that (even randomly shuffled) sequences contain palindromes that are on average longer than the longest common substrings (LCS) shared between permuted variants of the same sequence. Though the expected palindrome length is only slightly larger than the expected LCS, the distribution of alignment scores involving reversed sequences is strongly right-shifted, leading to greatly increased frequency of high-scoring alignments to reversed sequences. Impact: Overestimates of false match risk can motivate unnecessarily high score thresholds, leading to potentially reduced true match sensitivity. Also, when tool sensitivity is only reported up to the score of the first matched decoy sequence, a large decoy set consisting of reversed sequences can obscure sensitivity differences between tools. As a result of these observations, we advise that reversed biological sequences be used as decoys only when care is taken to remove positive matches in the original (un-reversed) sequences, or when overstatement of false labeling is not a concern. Though the primary focus of the analysis is on sequence annotation, we also demonstrate that the prevalence of internal palindromes may lead to an overstatement of the rate of false labels in protein identification with mass spectrometry.

9.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260252

RESUMO

We present BATH, a tool for highly sensitive annotation of protein-coding DNA based on direct alignment of that DNA to a database of protein sequences or profile hidden Markov models (pHMMs). BATH is built on top of the HMMER3 code base, and simplifies the annotation workflow for pHMM-based annotation by providing a straightforward input interface and easy-to-interpret output. BATH also introduces novel frameshift-aware algorithms to detect frameshift-inducing nucleotide insertions and deletions (indels). BATH matches the accuracy of HMMER3 for annotation of sequences containing no errors, and produces superior accuracy to all tested tools for annotation of sequences containing nucleotide indels. These results suggest that BATH should be used when high annotation sensitivity is required, particularly when frameshift errors are expected to interrupt protein-coding regions, as is true with long read sequencing data and in the context of pseudogenes.

10.
Bioinform Adv ; 4(1): vbae088, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966592

RESUMO

Summary: We present BATH, a tool for highly sensitive annotation of protein-coding DNA based on direct alignment of that DNA to a database of protein sequences or profile hidden Markov models (pHMMs). BATH is built on top of the HMMER3 code base, and simplifies the annotation workflow for pHMM-based translated sequence annotation by providing a straightforward input interface and easy-to-interpret output. BATH also introduces novel frameshift-aware algorithms to detect frameshift-inducing nucleotide insertions and deletions (indels). BATH matches the accuracy of HMMER3 for annotation of sequences containing no errors, and produces superior accuracy to all tested tools for annotation of sequences containing nucleotide indels. These results suggest that BATH should be used when high annotation sensitivity is required, particularly when frameshift errors are expected to interrupt protein-coding regions, as is true with long-read sequencing data and in the context of pseudogenes. Availability and implementation: The software is available at https://github.com/TravisWheelerLab/BATH.

11.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352323

RESUMO

" Fast is fine, but accuracy is final. " -- Wyatt Earp. Background: The extreme diversity of newly sequenced organisms and considerable scale of modern sequence databases lead to a tension between competing needs for sensitivity and speed in sequence annotation, with multiple tools displacing the venerable BLAST software suite on one axis or another. Alignment based on profile hidden Markov models (pHMMs) has demonstrated state of art sensitivity, while recent algorithmic advances have resulted in hyper-fast annotation tools with sensitivity close to that of BLAST. Results: Here, we introduce a new tool that bridges the gap between advances in these two directions, reaching speeds comparable to fast annotation methods such as MMseqs2 while retaining most of the sensitivity offered by pHMMs. The tool, called nail, implements a heuristic approximation of the pHMM Forward/Backward (FB) algorithm by identifying a sparse subset of the cells in the FB dynamic programming matrix that contains most of the probability mass. The method produces an accurate approximation of pHMM scores and E-values with high speed and small memory requirements. On a protein benchmark, nail recovers the majority of recall difference between MMseqs2 and HMMER, with run time ~26x faster than HMMER3 (only ~2.4x slower than MMseqs2's sensitive variant). nail is released under the open BSD-3-clause license and is available for download at https://github.com/TravisWheelerLab/nail.

12.
NAR Genom Bioinform ; 6(2): lqae030, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584872

RESUMO

Bacteriophages are viruses that infect bacteria. Many bacteriophages integrate their genomes into the bacterial chromosome and become prophages. Prophages may substantially burden or benefit host bacteria fitness, acting in some cases as parasites and in others as mutualists. Some prophages have been demonstrated to increase host virulence. The increasing ease of bacterial genome sequencing provides an opportunity to deeply explore prophage prevalence and insertion sites. Here we present VIBES (Viral Integrations in Bacterial genomES), a workflow intended to automate prophage annotation in complete bacterial genome sequences. VIBES provides additional context to prophage annotations by annotating bacterial genes and viral proteins in user-provided bacterial and viral genomes. The VIBES pipeline is implemented as a Nextflow-driven workflow, providing a simple, unified interface for execution on local, cluster and cloud computing environments. For each step of the pipeline, a container including all necessary software dependencies is provided. VIBES produces results in simple tab-separated format and generates intuitive and interactive visualizations for data exploration. Despite VIBES's primary emphasis on prophage annotation, its generic alignment-based design allows it to be deployed as a general-purpose sequence similarity search manager. We demonstrate the utility of the VIBES prophage annotation workflow by searching for 178 Pf phage genomes across 1072 Pseudomonas spp. genomes.

13.
Elife ; 132024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696239

RESUMO

The reconstruction of complete microbial metabolic pathways using 'omics data from environmental samples remains challenging. Computational pipelines for pathway reconstruction that utilize machine learning methods to predict the presence or absence of KEGG modules in incomplete genomes are lacking. Here, we present MetaPathPredict, a software tool that incorporates machine learning models to predict the presence of complete KEGG modules within bacterial genomic datasets. Using gene annotation data and information from the KEGG module database, MetaPathPredict employs deep learning models to predict the presence of KEGG modules in a genome. MetaPathPredict can be used as a command line tool or as a Python module, and both options are designed to be run locally or on a compute cluster. Benchmarks show that MetaPathPredict makes robust predictions of KEGG module presence within highly incomplete genomes.


Assuntos
Genoma Bacteriano , Redes e Vias Metabólicas , Software , Redes e Vias Metabólicas/genética , Biologia Computacional/métodos , Aprendizado de Máquina , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação
14.
PLoS One ; 18(5): e0285225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37155621

RESUMO

The organization of homologous protein sequences into multiple sequence alignments (MSAs) is a cornerstone of modern analysis of proteins. Recent focus on the importance of alternatively-spliced isoforms in disease and cell biology has highlighted the need for MSA software that can appropriately account for isoforms and the exon-length insertions or deletions that isoforms may have relative to each other. We previously developed Mirage, a software package for generating MSAs for isoforms spanning multiple species. Here, we present Mirage2, which retains the fundamental algorithms of the original Mirage implementation while providing substantially improved translated mapping and improving several aspects of usability. We demonstrate that Mirage2 is highly effective at mapping proteins to their encoding exons, and that these protein-genome mappings lead to extremely accurate intron-aware alignments. Additionally, Mirage2 implements a number of engineering improvements that simplify installation and use.


Assuntos
Algoritmos , Software , Alinhamento de Sequência , Isoformas de Proteínas/genética , Mapeamento Cromossômico
15.
bioRxiv ; 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36747788

RESUMO

Recordings of animal sounds enable a wide range of observational inquiries into animal communication, behavior, and diversity. Automated labeling of sound events in such recordings can improve both throughput and reproducibility of analysis. Here, we describe our software package for labeling sound elements in recordings of animal sounds and demonstrate its utility on recordings of beetle courtships and whale songs. The software, DISCO, computes sensible confidence estimates and produces labels with high precision and accuracy. In addition to the core labeling software, it provides a simple tool for labeling training data, and a visual system for analysis of resulting labels. DISCO is open-source and easy to install, it works with standard file formats, and it presents a low barrier of entry to use.

16.
PLoS One ; 18(7): e0288172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37494341

RESUMO

Recordings of animal sounds enable a wide range of observational inquiries into animal communication, behavior, and diversity. Automated labeling of sound events in such recordings can improve both throughput and reproducibility of analysis. Here, we describe our software package for labeling elements in recordings of animal sounds, and demonstrate its utility on recordings of beetle courtships and whale songs. The software, DISCO, computes sensible confidence estimates and produces labels with high precision and accuracy. In addition to the core labeling software, it provides a simple tool for labeling training data, and a visual system for analysis of resulting labels. DISCO is open-source and easy to install, it works with standard file formats, and it presents a low barrier of entry to use.


Assuntos
Aprendizado Profundo , Animais , Incerteza , Reprodutibilidade dos Testes , Acústica , Baleias , Vocalização Animal
17.
bioRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37905003

RESUMO

Bacteriophages are viruses that infect bacteria. Many bacteriophages integrate their genomes into the bacterial chromosome and become prophages. Prophages may substantially burden or benefit host bacteria fitness, acting in some cases as parasites and in others as mutualists, and have been demonstrated to increase host virulence. The increasing ease of bacterial genome sequencing provides an opportunity to deeply explore prophage prevalence and insertion sites. Here we present VIBES, a workflow intended to automate prophage annotation in complete bacterial genome sequences. VIBES provides additional context to prophage annotations by annotating bacterial genes and viral proteins in user-provided bacterial and viral genomes. The VIBES pipeline is implemented as a Nextflow-driven workflow, providing a simple, unified interface for execution on local, cluster, and cloud computing environments. For each step of the pipeline, a container including all necessary software dependencies is provided. VIBES produces results in simple tab separated format and generates intuitive and interactive visualizations for data exploration. Despite VIBES' primary emphasis on prophage annotation, its generic alignment-based design allows it to be deployed as a general-purpose sequence similarity search manager. We demonstrate the utility of the VIBES prophage annotation workflow by searching for 178 Pf phage genomes across 1,072 Pseudomonas spp. genomes. VIBES software is available at https://github.com/TravisWheelerLab/VIBES.

18.
Genes (Basel) ; 14(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36833175

RESUMO

The history of Alu retroposons has been choreographed by the systematic accumulation of inherited diagnostic nucleotide substitutions to form discrete subfamilies, each having a distinct nucleotide consensus sequence. The oldest subfamily, AluJ, gave rise to AluS after the split between Strepsirrhini and what would become Catarrhini and Platyrrhini. The AluS lineage gave rise to AluY in catarrhines and to AluTa in platyrrhines. Platyrrhine Alu subfamilies Ta7, Ta10, and Ta15 were assigned names based on a standardized nomenclature. However, with the subsequent intensification of whole genome sequencing (WGS), large scale analyses to characterize Alu subfamilies using the program COSEG identified entire lineages of subfamilies simultaneously. The first platyrrhine genome with WGS, the common marmoset (Callithrix jacchus; [caljac3]), resulted in Alu subfamily names sf0 to sf94 in an arbitrary order. Although easily resolved by alignment of the consensus sequences, this naming convention can become increasingly confusing as more genomes are independently analyzed. In this study, we reported Alu subfamily characterization for the platyrrhine three-family clade of Cebidae, Callithrichidae, and Aotidae. We investigated one species/genome from each recognized family of Callithrichidae and Aotidae and of both subfamilies (Cebinae and Saimiriinae) of the family Cebidae. Furthermore, we constructed a comprehensive network of Alu subfamily evolution within the three-family clade of platyrrhines to provide a working framework for future research. Alu expansion in the three-family clade has been dominated by AluTa15 and its derivatives.


Assuntos
Cebidae , Animais , Cebidae/genética , Aotidae/genética , Elementos Alu , Evolução Molecular , Cercopithecidae/genética , Nucleotídeos
19.
NAR Genom Bioinform ; 4(2): lqac040, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35591887

RESUMO

The construction of a high-quality multiple sequence alignment (MSA) from copies of a transposable element (TE) is a critical step in the characterization of a new TE family. Most studies of MSA accuracy have been conducted on protein or RNA sequence families, where structural features and strong signals of selection may assist with alignment. Less attention has been given to the quality of sequence alignments involving neutrally evolving DNA sequences such as those resulting from TE replication. Transposable element sequences are challenging to align due to their wide divergence ranges, fragmentation, and predominantly-neutral mutation patterns. To gain insight into the effects of these properties on MSA accuracy, we developed a simulator of TE sequence evolution, and used it to generate a benchmark with which we evaluated the MSA predictions produced by several popular aligners, along with Refiner, a method we developed in the context of our RepeatModeler software. We find that MAFFT and Refiner generally outperform other aligners for low to medium divergence simulated sequences, while Refiner is uniquely effective when tasked with aligning high-divergent and fragmented instances of a family.

20.
NAR Genom Bioinform ; 4(4): lqac077, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36212708

RESUMO

We present SODA, a lightweight and open-source visualization library for biological sequence annotations that enables straightforward development of flexible, dynamic and interactive web graphics. SODA is implemented in TypeScript and can be used as a library within TypeScript and JavaScript.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA