Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38205966

RESUMO

Multi-omics data integration is a complex and challenging task in biomedical research. Consensus clustering, also known as meta-clustering or cluster ensembles, has become an increasingly popular downstream tool for phenotyping and endotyping using multiple omics and clinical data. However, current consensus clustering methods typically rely on ensembling clustering outputs with similar sample coverages (mathematical replicates), which may not reflect real-world data with varying sample coverages (biological replicates). To address this issue, we propose a new consensus clustering with missing labels (ccml) strategy termed ccml, an R protocol for two-step consensus clustering that can handle unequal missing labels (i.e. multiple predictive labels with different sample coverages). Initially, the regular consensus weights are adjusted (normalized) by sample coverage, then a regular consensus clustering is performed to predict the optimal final cluster. We applied the ccml method to predict molecularly distinct groups based on 9-omics integration in the Karolinska COSMIC cohort, which investigates chronic obstructive pulmonary disease, and 24-omics handprint integrative subgrouping of adult asthma patients of the U-BIOPRED cohort. We propose ccml as a downstream toolkit for multi-omics integration analysis algorithms such as Similarity Network Fusion and robust clustering of clinical data to overcome the limitations posed by missing data, which is inevitable in human cohorts consisting of multiple data modalities. The ccml tool is available in the R language (https://CRAN.R-project.org/package=ccml, https://github.com/pulmonomics-lab/ccml, or https://github.com/ZhoulabCPH/ccml).


Assuntos
Asma , Multiômica , Adulto , Humanos , Consenso , Análise por Conglomerados , Algoritmos , Asma/genética
2.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38221905

RESUMO

BACKGROUND: Portal vein thrombosis (PVT) is a significant issue in cirrhotic patients, necessitating early detection. This study aims to develop a data-driven predictive model for PVT diagnosis in chronic hepatitis liver cirrhosis patients. METHODS: We employed data from a total of 816 chronic cirrhosis patients with PVT, divided into the Lanzhou cohort (n = 468) for training and the Jilin cohort (n = 348) for validation. This dataset encompassed a wide range of variables, including general characteristics, blood parameters, ultrasonography findings and cirrhosis grading. To build our predictive model, we employed a sophisticated stacking approach, which included Support Vector Machine (SVM), Naïve Bayes and Quadratic Discriminant Analysis (QDA). RESULTS: In the Lanzhou cohort, SVM and Naïve Bayes classifiers effectively classified PVT cases from non-PVT cases, among the top features of which seven were shared: Portal Velocity (PV), Prothrombin Time (PT), Portal Vein Diameter (PVD), Prothrombin Time Activity (PTA), Activated Partial Thromboplastin Time (APTT), age and Child-Pugh score (CPS). The QDA model, trained based on the seven shared features on the Lanzhou cohort and validated on the Jilin cohort, demonstrated significant differentiation between PVT and non-PVT cases (AUROC = 0.73 and AUROC = 0.86, respectively). Subsequently, comparative analysis showed that our QDA model outperformed several other machine learning methods. CONCLUSION: Our study presents a comprehensive data-driven model for PVT diagnosis in cirrhotic patients, enhancing clinical decision-making. The SVM-Naïve Bayes-QDA model offers a precise approach to managing PVT in this population.


Assuntos
Veia Porta , Trombose Venosa , Humanos , Veia Porta/patologia , Fatores de Risco , Teorema de Bayes , Medicina de Precisão , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico , Fibrose , Trombose Venosa/complicações , Trombose Venosa/diagnóstico
3.
Respir Res ; 25(1): 86, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336805

RESUMO

BACKGROUND: Bronchopulmonary Dysplasia (BPD) in infants born prematurely is a risk factor for chronic airway obstruction later in life. The distribution of T cell subtypes in the large airways is largely unknown. OBJECTIVE: To characterize cellular and T cell profiles in the large airways of young adults with a history of BPD. METHODS: Forty-three young adults born prematurely (preterm (n = 20), BPD (n = 23)) and 45 full-term-born (asthma (n = 23), healthy (n = 22)) underwent lung function measurements, and bronchoscopy with large airway bronchial wash (BW). T-cells subsets in BW were analyzed by immunocytochemistry. RESULTS: The proportions of both lymphocytes and CD8 + T cells in BW were significantly higher in BPD (median, 6.6%, and 78.0%) when compared with asthma (3.4% and 67.8%, p = 0.002 and p = 0.040) and healthy (3.8% and 40%, p < 0.001 and p < 0.001). In all adults born prematurely (preterm and BPD), lymphocyte proportion correlated negatively with forced vital capacity (r= -0.324, p = 0.036) and CD8 + T cells correlated with forced expiratory volume in one second, FEV1 (r=-0.448, p = 0.048). Correlation-based network analysis revealed that lung function cluster and BPD-birth cluster were associated with lymphocytes and/or CD4 + and CD8 + T cells. Multivariate regression analysis showed that lymphocyte proportions and BPD severity qualified as independent factors associated with FEV1. CONCLUSIONS: The increased cytotoxic T cells in the large airways in young adults with former BPD, suggest a similar T-cell subset pattern as in the small airways, resembling features of COPD. Our findings strengthen the hypothesis that mechanisms involving adaptive and innate immune responses are involved in the development of airway disease due to preterm birth.


Assuntos
Asma , Displasia Broncopulmonar , Nascimento Prematuro , Doença Pulmonar Obstrutiva Crônica , Lactente , Feminino , Adulto Jovem , Humanos , Recém-Nascido , Displasia Broncopulmonar/diagnóstico , Volume Expiratório Forçado/fisiologia , Testes de Função Respiratória , Asma/complicações , Doença Pulmonar Obstrutiva Crônica/complicações
4.
Popul Health Metr ; 22(1): 10, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831424

RESUMO

BACKGROUND: There are significant geographic inequities in COVID-19 case fatality rates (CFRs), and comprehensive understanding its country-level determinants in a global perspective is necessary. This study aims to quantify the country-specific risk of COVID-19 CFR and propose tailored response strategies, including vaccination strategies, in 156 countries. METHODS: Cross-temporal and cross-country variations in COVID-19 CFR was identified using extreme gradient boosting (XGBoost) including 35 factors from seven dimensions in 156 countries from 28 January, 2020 to 31 January, 2022. SHapley Additive exPlanations (SHAP) was used to further clarify the clustering of countries by the key factors driving CFR and the effect of concurrent risk factors for each country. Increases in vaccination rates was simulated to illustrate the reduction of CFR in different classes of countries. FINDINGS: Overall COVID-19 CFRs varied across countries from 28 Jan 2020 to 31 Jan 31 2022, ranging from 68 to 6373 per 100,000 population. During the COVID-19 pandemic, the determinants of CFRs first changed from health conditions to universal health coverage, and then to a multifactorial mixed effect dominated by vaccination. In the Omicron period, countries were divided into five classes according to risk determinants. Low vaccination-driven class (70 countries) mainly distributed in sub-Saharan Africa and Latin America, and include the majority of low-income countries (95.7%) with many concurrent risk factors. Aging-driven class (26 countries) mainly distributed in high-income European countries. High disease burden-driven class (32 countries) mainly distributed in Asia and North America. Low GDP-driven class (14 countries) are scattered across continents. Simulating a 5% increase in vaccination rate resulted in CFR reductions of 31.2% and 15.0% for the low vaccination-driven class and the high disease burden-driven class, respectively, with greater CFR reductions for countries with high overall risk (SHAP value > 0.1), but only 3.1% for the ageing-driven class. CONCLUSIONS: Evidence from this study suggests that geographic inequities in COVID-19 CFR is jointly determined by key and concurrent risks, and achieving a decreasing COVID-19 CFR requires more than increasing vaccination coverage, but rather targeted intervention strategies based on country-specific risks.


Assuntos
COVID-19 , Saúde Global , Aprendizado de Máquina , SARS-CoV-2 , Humanos , COVID-19/mortalidade , Fatores de Risco , Pandemias , Vacinas contra COVID-19 , Vacinação
5.
Anal Bioanal Chem ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940870

RESUMO

In recent years, instrumental improvements have enabled the spread of mass spectrometry-based lipidomics platforms in biomedical research. In mass spectrometry, the reliability of generated data varies for each compound, contingent on, among other factors, the availability of labeled internal standards. It is challenging to evaluate the data for lipids without specific labeled internal standards, especially when dozens to hundreds of lipids are measured simultaneously. Thus, evaluation of the performance of these platforms at the individual lipid level in interlaboratory studies is generally not feasible in a time-effective manner. Herein, using a focused subset of sphingolipids, we present an in-house validation methodology for individual lipid reliability assessment, tailored to the statistical analysis to be applied. Moreover, this approach enables the evaluation of various methodological aspects, including discerning coelutions sharing identical selected reaction monitoring transitions, pinpointing optimal labeled internal standards and their concentrations, and evaluating different extraction techniques. While the full validation according to analytical guidelines for all lipids included in a lipidomics method is currently not possible, this process shows areas to focus on for subsequent method development iterations as well as the robustness of data generated across diverse methodologies.

6.
Comput Struct Biotechnol J ; 23: 2661-2668, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39027652

RESUMO

Background: During the COVID-19 pandemic a need to process large volumes of publications emerged. As the pandemic is winding down, the clinicians encountered a novel syndrome - Post-acute Sequelae of COVID-19 (PASC) - that affects over 10 % of those who contract SARS-CoV-2 and presents a significant challenge in the medical field. The continuous influx of publications underscores a need for efficient tools for navigating the literature. Objectives: We aimed to develop an application which will allow monitoring and categorizing COVID-19-related literature through building publication networks and medical subject headings (MeSH) maps to identify key publications and networks. Methods: We introduce CORACLE (COVID-19 liteRAture CompiLEr), an innovative web application designed to analyse COVID-19-related scientific articles and to identify research trends. CORACLE features three primary interfaces: The "Search" interface, which displays research trends and citation links; the "Citation Map" interface, allowing users to create tailored citation networks from PubMed Identifiers (PMIDs) to uncover common references among selected articles; and the "MeSH" interface, highlighting current MeSH trends and their associations. Results: CORACLE leverages PubMed data to categorize literature on COVID-19 and PASC, aiding in the identification of relevant research publication hubs. Using lung function in PASC patients as a search example, we demonstrate how to identify and visualize the interactions between the relevant publications. Conclusion: CORACLE is an effective tool for the extraction and analysis of literature. Its functionalities, including the MeSH trends and customizable citation mapping, facilitate the discovery of emerging trends in COVID-19 and PASC research.

7.
Eur Clin Respir J ; 11(1): 2372903, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015382

RESUMO

Background: A substantial proportion of individuals with COPD have never smoked, and it is implied to be more common than previously anticipated but poorly studied. Aim: To describe the process of recruitment of never-smokers with COPD from a population-based cohort (n = 30 154). Methods: We recruited never-smokers with COPD, aged 50-75 years, from six University Hospitals, based on: 1) post broncho-dilator forced expiratory volume in 1 second/forced vital capacity (FEV1/FVC) < 0.70 and 2) FEV1 50-100% of predicted value and 3) being never-smokers (self-reported). In total 862 SCAPIS participants were identified, of which 652 were reachable and agreed to a first screening by telephone. Altogether 128 (20%) were excluded due to previous smoking or declined participation. We also applied a lower limit of normal (LLN) of FEV1/FVC (z-score<-1.64) according to the Global Lung Initiative to ensure a stricter definition of airflow obstruction. Results: Data on respiratory symptoms, health status, and medical history were collected from 492 individuals, since 32 were excluded at a second data review (declined or previous smoking), prior to the first visit. Due to not matching the required lung function criteria at a second spirometry, an additional 334 (68%) were excluded. These exclusions were by reason of: FEV1/FVC ≥0.7 (49%), FEV1 > 100% of predicted (26%) or z-score ≥ -1,64 (24%). Finally, 154 never-smokers with COPD were included: 56 (36%) women, (mean) age 60 years, FEV1 84% of predicted, FEV1/FVC: 0.6, z-score: -2.2, Oxygen saturation: 97% and BMI: 26.8 kg/m2. Conclusions: The challenges of a recruitment process of never-smokers with COPD were shown, including the importance of correct spirometry testing and strict inclusion criteria. Our findings highlight the importance of repeated spirometry assessments for improved accuracy in diagnosing COPD.

8.
Clin Transl Med ; 14(7): e1771, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39073027

RESUMO

BACKGROUND: Clustering approaches using single omics platforms are increasingly used to characterise molecular phenotypes of eosinophilic and neutrophilic asthma. Effective integration of multi-omics platforms should lead towards greater refinement of asthma endotypes across molecular dimensions and indicate key targets for intervention or biomarker development. OBJECTIVES: To determine whether multi-omics integration of sputum leads to improved granularity of the molecular classification of severe asthma. METHODS: We analyzed six -omics data blocks-microarray transcriptomics, gene set variation analysis of microarray transcriptomics, SomaSCAN proteomics assay, shotgun proteomics, 16S microbiome sequencing, and shotgun metagenomic sequencing-from induced sputum samples of 57 severe asthma patients, 15 mild-moderate asthma patients, and 13 healthy volunteers in the U-BIOPRED European cohort. We used Monti consensus clustering algorithm for aggregation of clustering results and Similarity Network Fusion to integrate the 6 multi-omics datasets of the 72 asthmatics. RESULTS: Five stable omics-associated clusters were identified (OACs). OAC1 had the best lung function with the least number of severe asthmatics with sputum paucigranulocytic inflammation. OAC5 also had fewer severe asthma patients but the highest incidence of atopy and allergic rhinitis, with paucigranulocytic inflammation. OAC3 comprised only severe asthmatics with the highest sputum eosinophilia. OAC2 had the highest sputum neutrophilia followed by OAC4 with both clusters consisting of mostly severe asthma but with more ex/current smokers in OAC4. Compared to OAC4, there was higher incidence of nasal polyps, allergic rhinitis, and eczema in OAC2. OAC2 had microbial dysbiosis with abundant Moraxella catarrhalis and Haemophilus influenzae. OAC4 was associated with pathways linked to IL-22 cytokine activation, with the prediction of therapeutic response to anti-IL22 antibody therapy. CONCLUSION: Multi-omics analysis of sputum in asthma has defined with greater granularity the asthma endotypes linked to neutrophilic and eosinophilic inflammation. Modelling diverse types of high-dimensional interactions will contribute to a more comprehensive understanding of complex endotypes. KEY POINTS: Unsupervised clustering on sputum multi-omics of asthma subjects identified 3 out of 5 clusters with predominantly severe asthma. One severe asthma cluster was linked to type 2 inflammation and sputum eosinophilia while the other 2 clusters to sputum neutrophilia. One severe neutrophilic asthma cluster was linked to Moraxella catarrhalis and to a lesser extent Haemophilus influenzae while the second cluster to activation of IL-22.


Assuntos
Asma , Escarro , Humanos , Escarro/microbiologia , Escarro/metabolismo , Asma/microbiologia , Asma/imunologia , Asma/genética , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Neutrófilos/imunologia , Eosinófilos/metabolismo , Multiômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA