Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Med ; 4(7): e249, 2007 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-17676991

RESUMO

BACKGROUND: Delayed fracture healing causes substantial disability and usually requires additional surgical treatments. Pharmacologic management to improve fracture repair would substantially improve patient outcome. The signaling pathways regulating bone healing are beginning to be unraveled, and they provide clues into pharmacologic management. The beta-catenin signaling pathway, which activates T cell factor (TCF)-dependent transcription, has emerged as a key regulator in embryonic skeletogenesis, positively regulating osteoblasts. However, its role in bone repair is unknown. The goal of this study was to explore the role of beta-catenin signaling in bone repair. METHODS AND FINDINGS: Western blot analysis showed significant up-regulation of beta-catenin during the bone healing process. Using a beta-Gal activity assay to observe activation during healing of tibia fractures in a transgenic mouse model expressing a TCF reporter, we found that beta-catenin-mediated, TCF-dependent transcription was activated in both bone and cartilage formation during fracture repair. Using reverse transcription-PCR, we observed that several WNT ligands were expressed during fracture repair. Treatment with DKK1 (an antagonist of WNT/beta-catenin pathway) inhibited beta-catenin signaling and the healing process, suggesting that WNT ligands regulate beta-catenin. Healing was significantly repressed in mice conditionally expressing either null or stabilized beta-catenin alleles induced by an adenovirus expressing Cre recombinase. Fracture repair was also inhibited in mice expressing osteoblast-specific beta-catenin null alleles. In stark contrast, there was dramatically enhanced bone healing in mice expressing an activated form of beta-catenin, whose expression was restricted to osteoblasts. Treating mice with lithium activated beta-catenin in the healing fracture, but healing was enhanced only when treatment was started subsequent to the fracture. CONCLUSIONS: These results demonstrate that beta-catenin functions differently at different stages of fracture repair. In early stages, precise regulation of beta-catenin is required for pluripotent mesenchymal cells to differentiate to either osteoblasts or chondrocytes. Once these undifferentiated cells have become committed to the osteoblast lineage, beta-catenin positively regulates osteoblasts. This is a different function for beta-catenin than has previously been reported during development. Activation of beta-catenin by lithium treatment has potential to improve fracture healing, but only when utilized in later phases of repair, after mesenchymal cells have become committed to the osteoblast lineage.


Assuntos
Fraturas Ósseas/fisiopatologia , Transdução de Sinais/fisiologia , Cicatrização/fisiologia , beta Catenina/fisiologia , Adenoviridae/genética , Animais , Western Blotting , Fraturas Ósseas/genética , Fraturas Ósseas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Integrases/genética , Integrases/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lítio/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Osteoblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Transfecção/métodos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/fisiologia , Cicatrização/efeitos dos fármacos , Cicatrização/genética , beta Catenina/genética , beta Catenina/metabolismo
2.
J Biol Chem ; 282(1): 526-33, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17085452

RESUMO

Endochondral ossification is recapitulated during bone morphogenetic protein (BMP)-induced ectopic bone formation. Although BMP and beta-catenin have been investigated in bone development and in mesenchymal cells, how they interact in this process is not clear. We implanted recombinant BMP-2 into the muscle of mice to investigate the effect of beta-catenin signaling on BMP-induced in vivo endochondral bone formation. BMP-2 induced expression of several Wnt ligands and their receptors and also activated beta-catenin-mediated T cell factor-dependent transcriptional activity. An adenovirus expressing Dickkopf-1 (Dkk-1, an inhibitor of canonical Wnt pathway) inhibited beta-catenin signaling and endochondral bone formation. Interestingly, Dkk-1 inhibited both chondrogenesis and osteogenesis. Likewise, mice expressing conditional beta-catenin null alleles also displayed an inhibition of BMP-induced chondrogenesis and osteogenesis. This is in contrast to studies of embryonic skeletogenesis, which demonstrate that beta-catenin is required for osteogenesis but is dispensable for chondrogenesis. These findings suggest that embryonic development pathways are not always recapitulated during post-natal regenerative processes, and the biochemical pathways utilized to regulate cell differentiation may be different. During in vivo ectopic bone formation, BMP-2 induces beta-catenin-mediated signaling through Wnt ligands, and beta-catenin is required for both chondrogenesis and osteogenesis.


Assuntos
Osso e Ossos/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Alelos , Animais , Diferenciação Celular , Condrócitos/metabolismo , Humanos , Ligantes , Masculino , Camundongos , Camundongos Transgênicos , Osteoblastos/metabolismo , Proteínas Recombinantes/química , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA