Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
J Biol Chem ; 300(7): 107422, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38815866

RESUMO

Infiltration of monocyte-derived cells to sites of infection and injury is greater in males than in females, due in part, to increased chemotaxis, the process of directed cell movement toward a chemical signal. The mechanisms governing sexual dimorphism in chemotaxis are not known. We hypothesized a role for the store-operated calcium entry (SOCE) pathway in regulating chemotaxis by modulating leading and trailing edge membrane dynamics. We measured the chemotactic response of bone marrow-derived macrophages migrating toward complement component 5a (C5a). Chemotactic ability was dependent on sex and inflammatory phenotype (M0, M1, and M2), and correlated with SOCE. Notably, females exhibited a significantly lower magnitude of SOCE than males. When we knocked out the SOCE gene, stromal interaction molecule 1 (STIM1), it eliminated SOCE and equalized chemotaxis across both sexes. Analysis of membrane dynamics at the leading and trailing edges showed that STIM1 influences chemotaxis by facilitating retraction of the trailing edge. Using BTP2 to pharmacologically inhibit SOCE mirrored the effects of STIM1 knockout, demonstrating a central role of STIM/Orai-mediated calcium signaling. Importantly, by monitoring the recruitment of adoptively transferred monocytes in an in vivo model of peritonitis, we show that increased infiltration of male monocytes during infection is dependent on STIM1. These data support a model in which STIM1-dependent SOCE is necessary and sufficient for mediating the sex difference in monocyte recruitment and macrophage chemotactic ability by regulating trailing edge dynamics.

2.
J Pharmacol Exp Ther ; 388(2): 576-585, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37541763

RESUMO

Inhalation of high levels of sulfur mustard (SM), a potent vesicating and alkylating agent used in chemical warfare, results in acutely lethal pulmonary damage. Sodium 2-mercaptoethane sulfonate (mesna) is an organosulfur compound that is currently Food and Drug Administration (FDA)-approved for decreasing the toxicity of mustard-derived chemotherapeutic alkylating agents like ifosfamide and cyclophosphamide. The nucleophilic thiol of mesna is a suitable reactant for the neutralization of the electrophilic group of toxic mustard intermediates. In a rat model of SM inhalation, treatment with mesna (three doses: 300 mg/kg intraperitoneally 20 minutes, 4 hours, and 8 hours postexposure) afforded 74% survival at 48 hours, compared with 0% survival at less than 17 hours in the untreated and vehicle-treated control groups. Protection from cardiopulmonary failure by mesna was demonstrated by improved peripheral oxygen saturation and increased heart rate through 48 hours. Additionally, mesna normalized arterial pH and pACO2 Airway fibrin cast formation was decreased by more than 66% in the mesna-treated group at 9 hour after exposure compared with the vehicle group. Finally, analysis of mixtures of a mustard agent and mesna by a 5,5'-dithiobis(2-nitrobenzoic acid) assay and high performance liquid chromatography tandem mass spectrometry demonstrate a direct reaction between the compounds. This study provides evidence that mesna is an efficacious, inexpensive, FDA-approved candidate antidote for SM exposure. SIGNIFICANCE STATEMENT: Despite the use of sulfur mustard (SM) as a chemical weapon for over 100 years, an ideal drug candidate for treatment after real-world exposure situations has not yet been identified. Utilizing a uniformly lethal animal model, the results of the present study demonstrate that sodium 2-mercaptoethane sulfonate is a promising candidate for repurposing as an antidote, decreasing airway obstruction and improving pulmonary gas exchange, tissue oxygen delivery, and survival following high level SM inhalation exposure, and warrants further consideration.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Ratos , Animais , Gás de Mostarda/toxicidade , Mesna/farmacologia , Mesna/uso terapêutico , Antídotos/farmacologia , Antídotos/uso terapêutico , Pulmão , Sódio , Substâncias para a Guerra Química/toxicidade
3.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L259-L270, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36692168

RESUMO

Severe levels of acidosis (pH < 6.8) have been shown to cause a sustained rise in cytosolic Ca2+ concentration in carotid body Type 1 (glomus) cells. To understand how physiologically relevant levels of acidosis regulate Ca2+ signaling in glomus cells, we studied the effects of small changes in extracellular pH (pHo) on the kinetics of Ca2+ oscillations. A decrease in pHo from 7.4 to 7.3 (designated mild) and 7.2 (designated moderate) acidosis produced significant increases in the frequency and amplitude of Ca2+ oscillations. These effects of acidosis on Ca2+ oscillations were not blocked by NS383 and amiloride [acid-sensing ion channel (ASIC) inhibitors]. Mild and moderate levels of acidosis, however, caused a small but significant inhibition of two-pore domain acid-sensing K+ channels (TASK) (TASK-1- and TASK-3-like channels) and depolarized the cell by 6-13 mV. Acidosis-induced increase in Ca2+ oscillations was inhibited by nifedipine (1 µM; L-type Cav inhibitor) and by TTA-P2 (20 µM; T-type Cav inhibitor). Mild inhibition of TASK activity by N-[(2,4-difluorophenyl)methyl]-2'-[[[2-(4methoxyphenyl)acetyl]amino]methyl][1,1'-biphenyl]-2-carboxamide (A1899) (0.3 µM) and 1-[1-[6-[[1,1'-biphenyl]-4-ylcarbonyl)-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine-4-yl]-4-piperidinyl]-1-butanon (PK-THPP) (0.1 µM) increased Ca2+ oscillation frequency to levels similar to those observed with mild-moderate acidosis. Mild acidosis (pHo 7.3) and mild hypoxia (∼5%O2) produced similar levels of changes in the kinetics of Ca2+ oscillations. Block of tetraethylammonium (TEA)-sensitive Kv channels did not affect acid-induced increase in Ca2+ oscillations. Our study shows that mild and moderate levels of acidosis increase the frequency and amplitude of Ca2+ oscillations primarily by inhibition of TASK without involving ASICs, and suggests a major role of TASK for signal transduction in response to a physiological change in pHo.


Assuntos
Acidose , Corpo Carotídeo , Ratos , Animais , Células Quimiorreceptoras , Ácidos , Concentração de Íons de Hidrogênio , Cálcio
4.
Biochem J ; 479(19): 2013-2034, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36094147

RESUMO

The opportunistic bacterium Pseudomonas aeruginosa secretes the quorum-sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone (C12) to co-ordinate gene expression profiles favorable for infection. Recent studies have demonstrated that high concentrations of C12 impair many aspects of host cell physiology, including mitochondrial function and cell viability. The cytotoxic effects of C12 are mediated by the lactonase enzyme, Paraoxonase 2 (PON2), which hydrolyzes C12 to a reactive metabolite. However, the influence of C12 on host cell physiology at concentrations observed in patients infected with P. aeruginosa is largely unknown. Since the primary site of P. aeruginosa infections is the mammalian airway, we sought to investigate how PON2 modulates the effects of C12 at subtoxic concentrations using immortalized murine tracheal epithelial cells (TECs) isolated from wild-type (WT) or PON2-knockout (PON2-KO) mice. Our data reveal that C12 at subtoxic concentrations disrupts mitochondrial bioenergetics to hinder cellular proliferation in TECs expressing PON2. Subtoxic concentrations of C12 disrupt normal mitochondrial network morphology in a PON2-dependent manner without affecting mitochondrial membrane potential. In contrast, higher concentrations of C12 depolarize mitochondrial membrane potential and subsequently trigger caspase signaling and apoptotic cell death. These findings demonstrate that different concentrations of C12 impact distinct aspects of host airway epithelial cell physiology through PON2 activity in mitochondria.


Assuntos
Homosserina , Percepção de Quorum , 4-Butirolactona/análogos & derivados , Animais , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Arildialquilfosfatase/farmacologia , Caspases/metabolismo , Células Epiteliais/metabolismo , Homosserina/metabolismo , Homosserina/farmacologia , Lactonas/metabolismo , Lactonas/farmacologia , Mamíferos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Pseudomonas aeruginosa/metabolismo
5.
Am J Respir Cell Mol Biol ; 66(3): 323-336, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34890296

RESUMO

Administration of high concentrations of oxygen (hyperoxia) is one of few available options to treat acute hypoxemia-related respiratory failure, as seen in the current coronavirus disease (COVID-19) pandemic. Although hyperoxia can cause acute lung injury through increased production of superoxide anion (O2•-), the choice of high-concentration oxygen administration has become a necessity in critical care. The objective of this study was to test the hypothesis that UCP2 (uncoupling protein 2) has a major function of reducing O2•- generation in the lung in ambient air or in hyperoxia. Lung epithelial cells and wild-type; UCP2-/-; or transgenic, hTrx overexpression-bearing mice (Trx-Tg) were exposed to hyperoxia and O2•- generation was measured by using electron paramagnetic resonance, and lung injury was measured by using histopathologic analysis. UCP2 expression was analyzed by using RT-PCR analysis, Western blotting analysis, and RNA interference. The signal transduction pathways leading to loss of UCP2 expression were analyzed by using IP, phosphoprotein analysis, and specific inhibitors. UCP2 mRNA and protein expression were acutely decreased in hyperoxia, and these decreases were associated with a significant increase in O2•- production in the lung. Treatment of cells with rhTrx (recombinant human thioredoxin) or exposure of Trx-Tg mice prevented the loss of UCP2 protein and decreased O2•- generation in the lung. Trx is also required to maintain UCP2 expression in normoxia. Loss of UCP2 in UCP2-/- mice accentuated lung injury in hyperoxia. Trx activates the MKK4-p38MAPK (p38 mitogen-activated protein kinase)-PGC1α (PPARγ [peroxisome proliferator-activated receptor γ] coactivator 1α) pathway, leading to rescue of UCP2 and decreased O2•- generation in hyperoxia. Loss of UCP2 in hyperoxia is a major mechanism of O2•- production in the lung in hyperoxia. rhTrx can protect against lung injury in hyperoxia due to rescue of the loss of UCP2.


Assuntos
Pulmão/metabolismo , Oxigênio/metabolismo , Tiorredoxinas/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/terapia , Linhagem Celular , Humanos , Hiperóxia/metabolismo , Pulmão/citologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Oxigênio/toxicidade , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Transdução de Sinais , Superóxidos/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/farmacologia , Proteína Desacopladora 2/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Am J Physiol Cell Physiol ; 322(1): C38-C48, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788146

RESUMO

The gaseous signaling molecule hydrogen sulfide (H2S) physiologically regulates store-operated Ca2+ entry (SOCE). The SOCE machinery consists of the plasma membrane-localized Orai channels (Orai1-3) and endoplasmic reticulum-localized stromal interaction molecule (STIM)1 and STIM2 proteins. H2S inhibits Orai3- but not Orai1- or Orai2-mediated SOCE. The current objective was to define the mechanism by which H2S selectively modifies Orai3. We measured SOCE and STIM1/Orai3 dynamics and interactions in HEK293 cells exogenously expressing fluorescently tagged human STIM1 and Orai3 in the presence and absence of the H2S donor GYY4137. Two cysteines (C226 and C232) are present in Orai3 that are absent in the Orai1 and Orai2. When we mutated either of these cysteines to serine, alone or in combination, SOCE inhibition by H2S was abolished. We also established that inhibition was dependent on an interaction with STIM1. To further define the effects of H2S on STIM1/Orai3 interaction, we performed a series of fluorescence recovery after photobleaching (FRAP), colocalization, and fluorescence resonance energy transfer (FRET) experiments. Treatment with H2S did not affect the mobility of Orai3 in the membrane, nor did it influence STIM1/Orai3 puncta formation or STIM1-Orai3 protein-protein interactions. These data support a model in which H2S modification of Orai3 at cysteines 226 and 232 limits SOCE evoked upon store depletion and STIM1 engagement, by a mechanism independent of the interaction between Orai3 and STIM1.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cisteína/metabolismo , Sulfeto de Hidrogênio/toxicidade , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Células HEK293 , Humanos , Proteínas Sensoras de Cálcio Intracelular/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores
7.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L525-L535, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36041220

RESUMO

E-cigarette vaping is a major aspect of nicotine consumption, especially for children and young adults. Although it is branded as a safer alternative to cigarette smoking, murine and rat models of subacute and chronic e-cigarette vaping exposure have shown many proinflammatory changes in the respiratory tract. An acute vaping exposure paradigm has not been demonstrated in the golden Syrian hamster, and the hamster is a readily available small animal model that has the unique benefit of becoming infected with and transmitting respiratory viruses, including SARS-CoV-2, without genetic alteration of the animal or virus. Using a 2-day, whole body vaping exposure protocol in male golden Syrian hamsters, we evaluated serum cotinine, bronchoalveolar lavage cells, lung, and nasal histopathology, and gene expression in the nasopharynx and lung through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Depending on the presence of nonnormality or outliers, statistical analysis was performed by ANOVA or Kruskal-Wallis tests. For tests that were statistically significant (P < 0.05), post hoc Tukey-Kramer and Dunn's tests, respectively, were performed to make pairwise comparisons between groups. In nasal tissue, RT-qPCR analysis revealed nicotine-dependent increases in gene expression associated with type 1 inflammation (CCL-5 and CXCL-10), fibrosis [transforming growth factor-ß (TGF-ß)], nicotine-independent increase oxidative stress response (SOD-2), and a nicotine-independent decrease in vasculogenesis/angiogenesis (VEGF-A). In the lung, nicotine-dependent increases in the expression of genes involved in the renin-angiotensin pathway [angiotensin-converting enzyme (ACE), ACE2], coagulation (tissue factor, Serpine-1), extracellular matrix remodeling (MMP-2, MMP-9), type 1 inflammation (IL-1ß, TNF-α, and CXCL-10), fibrosis (TGF-ß and Serpine-1), oxidative stress response (SOD-2), neutrophil extracellular traps release (ELANE), and vasculogenesis and angiogenesis (VEGF-A) were identified. To our knowledge, this is the first demonstration that the Syrian hamster is a viable model of e-cigarette vaping. In addition, this is the first report that e-cigarette vaping with nicotine can increase tissue factor gene expression in the lung. Our results show that even an acute exposure to e-cigarette vaping causes significant upregulation of mRNAs in the respiratory tract from pathways involving the renin-angiotensin system, coagulation, extracellular matrix remodeling, type 1 inflammation, fibrosis, oxidative stress response, neutrophil extracellular trap release (NETosis), vasculogenesis, and angiogenesis.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Transcriptoma , Vaping , Animais , Cricetinae , Masculino , Enzima de Conversão de Angiotensina 2 , Angiotensinas , Cotinina , Fibrose , Inflamação/patologia , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Mesocricetus , Nicotina/farmacologia , Renina , Superóxido Dismutase , Tromboplastina , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa , Vaping/efeitos adversos , Fator A de Crescimento do Endotélio Vascular
8.
FASEB J ; 35(4): e21398, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710675

RESUMO

The importance of cell phenotype in determining the molecular mechanisms underlying ß2 -adrenoceptor (ß2AR) function has been noted previously when comparing responses in primary cells and recombinant model cell lines. Here, we have generated haplotype-specific SNAP-tagged ß2AR human embryonic stem (ES) cell lines and applied fluorescence correlation spectroscopy (FCS) to study cell surface receptors in progenitor cells and in differentiated fibroblasts and cardiomyocytes. FCS was able to quantify SNAP-tagged ß2AR number and diffusion in both ES-derived cardiomyocytes and CRISPR/Cas9 genome-edited HEK293T cells, where the expression level was too low to detect using standard confocal microscopy. These studies demonstrate the power of FCS in investigating cell surface ß2ARs at the very low expression levels often seen in endogenously expressing cells. Furthermore, the use of ES cell technology in combination with FCS allowed us to demonstrate that cell surface ß2ARs internalize in response to formoterol-stimulation in ES progenitor cells but not following their differentiation into ES-derived fibroblasts. This indicates that the process of agonist-induced receptor internalization is strongly influenced by cell phenotype and this may have important implications for drug treatment with long-acting ß2AR agonists.


Assuntos
Células-Tronco Embrionárias/fisiologia , Fibroblastos/fisiologia , Miócitos Cardíacos/fisiologia , Receptores Adrenérgicos beta 2/metabolismo , Espectrometria de Fluorescência/métodos , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Diferenciação Celular , Corantes Fluorescentes/química , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Proteínas de Membrana , Propranolol/farmacologia , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética
9.
Proc Biol Sci ; 288(1945): 20202726, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33593180

RESUMO

Fish routinely accelerate during locomotor manoeuvres, yet little is known about the dynamics of acceleration performance. Thunniform fish use their lunate caudal fin to generate lift-based thrust during steady swimming, but the lift is limited during acceleration from rest because required oncoming flows are slow. To investigate what other thrust-generating mechanisms occur during this behaviour, we used the robotic system termed Tunabot Flex, which is a research platform featuring yellowfin tuna-inspired body and tail profiles. We generated linear accelerations from rest of various magnitudes (maximum acceleration of [Formula: see text] at [Formula: see text] tail beat frequency) and recorded instantaneous electrical power consumption. Using particle image velocimetry data, we quantified body kinematics and flow patterns to then compute surface pressures, thrust forces and mechanical power output along the body through time. We found that the head generates net drag and that the posterior body generates significant thrust, which reveals an additional propulsion mechanism to the lift-based caudal fin in this thunniform swimmer during linear accelerations from rest. Studying fish acceleration performance with an experimental platform capable of simultaneously measuring electrical power consumption, kinematics, fluid flow and mechanical power output provides a new opportunity to understand unsteady locomotor behaviours in both fishes and bioinspired aquatic robotic systems.


Assuntos
Hidrodinâmica , Robótica , Aceleração , Fenômenos Biomecânicos , Natação
10.
Am J Respir Crit Care Med ; 202(8): 1146-1158, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32551816

RESUMO

Rationale: Antenatal inflammation with placental dysfunction is strongly associated with high bronchopulmonary dysplasia (BPD) risk in preterm infants. Whether antenatal or postnatal HIF (hypoxia-inducible factor) augmentation can preserve lung structure and function and prevent pulmonary hypertension after intrauterine inflammation is controversial.Objectives: To determine whether antenatal or postnatal prolyl-hydroxylase inhibitor (PHi) therapy increases lung HIF expression, preserves lung growth and function, and prevents pulmonary hypertension in a rat model of chorioamnionitis-induced BPD caused by antenatal inflammation.Methods: Endotoxin (ETX) was administered to pregnant rats by intraamniotic injection at Embryonic Day 20, and pups were delivered by cesarean section at Embryonic Day 22. Selective PHi drugs, dimethyloxalylglycine or GSK360A, were administered into the amniotic space at Embryonic Day 20 or after birth by intraperitoneal injection for 2 weeks. Placentas and lung tissue were collected at birth for morphometric and Western blot measurements of HIF-1a, HIF-2a, VEGF (vascular endothelial growth factor), and eNOS (endothelial nitric oxide synthase) protein contents. At Day 14, lung function was assessed, and tissues were harvested to determine alveolarization by radial alveolar counts, pulmonary vessel density, and right ventricle hypertrophy (RVH).Measurements and Main Results: Antenatal PHi therapy preserves lung alveolar and vascular growth and lung function and prevents RVH after intrauterine ETX exposure. Antenatal administration of PHi markedly upregulates lung HIF-1a, HIF-2a, VEGF, and eNOS expression after ETX exposure.Conclusions: HIF augmentation improves lung structure and function, prevents RVH, and improves placental structure following antenatal ETX exposure. We speculate that antenatal or postnatal PHi therapy may provide novel strategies to prevent BPD due to antenatal inflammation.


Assuntos
Displasia Broncopulmonar/tratamento farmacológico , Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/efeitos dos fármacos , Peptídeo PHI/farmacologia , Prenhez , Aminoácidos Dicarboxílicos/farmacologia , Animais , Animais Recém-Nascidos , Western Blotting , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Endotoxinas/efeitos adversos , Endotoxinas/farmacologia , Feminino , Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Imuno-Histoquímica , Técnicas In Vitro , Injeções Intralesionais , Pulmão/embriologia , Gravidez , Cuidado Pré-Natal , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/crescimento & desenvolvimento , Circulação Pulmonar/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Valores de Referência , Testes de Função Respiratória , Técnicas de Cultura de Tecidos
11.
Inhal Toxicol ; 33(1): 25-32, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356664

RESUMO

BACKGROUND: Methyl mercaptan occurs naturally in the environment and is found in a variety of occupational settings, including the oil, paper, plastics, and pesticides industries. It is a toxic gas and deaths from methyl mercaptan exposure have occurred. The Department of Homeland Security considers it a high threat chemical agent that could be used by terrorists. Unfortunately, no specific treatment exists for methyl mercaptan poisoning. METHODS: We conducted a randomized trial in 12 swine comparing no treatment to intramuscular injection of the vitamin B12 analog cobinamide (2.0 mL, 12.5 mg/kg) following acute inhalation of methyl mercaptan gas. Physiological and laboratory parameters were similar in the control and cobinamide-treated groups at baseline and at the time of treatment. RESULTS: All six cobinamide-treated animals survived, whereas only one of six control animals lived (17% survival) (p = 0.0043). The cobinamide-treated animals returned to a normal breathing pattern by 3.8 ± 1.1 min after treatment (mean ± SD), while all but one animal in the control group had intermittent gasping, never regaining a normal breathing pattern. Blood pressure and arterial oxygen saturation returned to baseline values within 15 minutes of cobinamide-treatment. Plasma lactate concentration increased progressively until death (10.93 ± 6.02 mmol [mean ± SD]) in control animals, and decreased toward baseline (3.79 ± 2.93 mmol [mean ± SD]) by the end of the experiment in cobinamide-treated animals. CONCLUSION: We conclude that intramuscular administration of cobinamide improves survival and clinical outcomes in a large animal model of acute, high dose methyl mercaptan poisoning.


Assuntos
Antídotos/farmacologia , Cobamidas/farmacologia , Compostos de Sulfidrila/toxicidade , Animais , Antídotos/administração & dosagem , Cobamidas/administração & dosagem , Feminino , Exposição por Inalação , Injeções Intramusculares , Masculino , Distribuição Aleatória , Suínos
12.
Am J Physiol Cell Physiol ; 318(2): C430-C438, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913694

RESUMO

We studied the mechanisms by which carotid body glomus (type 1) cells produce spontaneous Ca2+ oscillations in normoxia and hypoxia. In cells perfused with normoxic solution at 37°C, we observed relatively uniform, low-frequency Ca2+ oscillations in >60% of cells, with each cell showing its own intrinsic frequency and amplitude. The mean frequency and amplitude of Ca2+ oscillations were 0.6 ± 0.1 Hz and 180 ± 42 nM, respectively. The duration of each Ca2+ oscillation ranged from 14 to 26 s (mean of ∼20 s). Inhibition of inositol (1,4,5)-trisphosphate receptor and store-operated Ca2+ entry (SOCE) using 2-APB abolished Ca2+ oscillations. Inhibition of endoplasmic reticulum Ca2+-ATPase (SERCA) using thapsigargin abolished Ca2+ oscillations. ML-9, an inhibitor of STIM1 translocation, also strongly reduced Ca2+ oscillations. Inhibitors of L- and T-type Ca2+ channels (Cav; verapamil>nifedipine>TTA-P2) markedly reduced the frequency of Ca2+ oscillations. Thus, Ca2+ oscillations observed in normoxia were caused by cyclical Ca2+ fluxes at the ER, which was supported by Ca2+ influx via Ca2+ channels. Hypoxia (2-5% O2) increased the frequency and amplitude of Ca2+ oscillations, and Cav inhibitors (verapamil>nifedipine>>TTA-P2) reduced these effects of hypoxia. Our study shows that Ca2+ oscillations represent the basic Ca2+ signaling mechanism in normoxia and hypoxia in CB glomus cells.


Assuntos
Cálcio/metabolismo , Corpo Carotídeo/metabolismo , Hipóxia/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Corpo Carotídeo/efeitos dos fármacos , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Feminino , Masculino , Nifedipino/farmacologia , Ratos , Ratos Sprague-Dawley , Molécula 1 de Interação Estromal/metabolismo , Tapsigargina/farmacologia
13.
FASEB J ; 33(10): 11443-11457, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31339770

RESUMO

We previously reported in HEK 293T cells that silencing the mitochondrial peptidyl prolyl isomerase cyclophilin-D (Cyp-D) reduces Vo2. We now report that in vivo Cyp-D ablation using constitutive Cyp-D knockout (KO) mice also reduces Vo2 both at rest (∼15%) and during treadmill exercise (∼12%). Yet, despite Vo2 reduction, these Cyp-D KO mice ran longer (1071 ± 77 vs. 785 ± 79 m; P = 0.002), for longer time (43 ± 3 vs. 34 ± 3 min; P = 0.004), and at higher speed (34 ± 1 vs. 29 ± 1 m/s; P ≤ 0.001), resulting in increased work (87 ± 6 vs. 58 ± 6 J; P ≤ 0.001). There were parallel reductions in carbon dioxide production, but of lesser magnitude, yielding a 2.3% increase in the respiratory exchange ratio consistent with increased glucose utilization as respiratory substrate. In addition, primary skeletal muscle cells of Cyp-D KO mice subjected to electrical stimulation exhibited higher glucose uptake (4.4 ± 0.55 vs. 2.6 ± 0.04 pmol/mg/min; P ≤ 0.001) with enhanced AMPK activation (0.58 ± 0.06 vs. 0.38 ± 0.03 pAMPK/ß-tubulin ratio; P ≤ 0.01) and TBC1 (Tre-2/USP6, BUB2, Cdc16) domain family, member 1 (TBC1D1) inactivation. Likewise, pharmacological activation of AMPK also increased glucose uptake (3.2 ± 0.3 vs. 2.3 ± 0.2 pmol/mg/min; P ≤ 0.001). Moreover, lactate and ATP levels were increased in these cells. Taken together, Cyp-D ablation triggered an adaptive response resulting in increased exercise capacity despite less oxygen utilization associated with increased glucose uptake and utilization involving AMPK-TBC1D1 signaling nexus.-Radhakrishnan, J., Baetiong, A., Kaufman, H., Huynh, M., Leschinsky, A., Fresquez, A., White, C., DiMario, J. X., Gazmuri, R. J. Improved exercise capacity in cyclophilin-D knockout mice associated with enhanced oxygen utilization efficiency and augmented glucose uptake via AMPK-TBC1D1 signaling nexus.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , Transdução de Sinais/fisiologia , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Tolerância ao Exercício/fisiologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia
14.
Am J Ther ; 27(5): e431-e438, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30277904

RESUMO

BACKGROUND: Newborn infants are highly vulnerable to oxidative stress. Following birth asphyxia, oxidative injury due to ischemia-reperfusion can result in significant brain and heart damage, leading to death or long-term disability. STUDY QUESTION: The study objective was to evaluate the effectiveness of antioxidant gamma-L-glutamyl-L-cysteine (γGlu-Cys) in inhibiting oxidative injury to cultured embryonic cardiomyocytes (H9c2 cells). STUDY DESIGN: Control and γGlu-Cys-treated (0.5 mM) H9c2 cells were incubated under 6-hour ischemic conditions followed by 2-hour simulated reperfusion. MEASURES AND OUTCOMES: To quantify oxidative stress-induced apoptosis sustained by cardiomyocytes, lactate dehydrogenase (LDH) release and the presence of cytosolic cytochrome c were measured, as well as the number of secondary lysosomes visualized under electron microscopy. RESULTS: Compared to controls, H9c2 cells coincubated with γGlu-Cys during ischemia-reperfusion exhibited a significant reduction in both LDH release into the incubation medium [23.88 ± 4.08 (SE) vs. 9.95 ± 1.86% of total; P = 0.02] and the number of secondary lysosomes [0.070 ± 0.009 (SD) vs. 0.043 ± 0.004 per µm; P = 0.01]. Inhibition of LDH release with γGlu-Cys was the same (P = 0.67) as that of a caspase inhibitor. The significant increase in cytosolic cytochrome c (P = 0.01) after ischemia-reperfusion simulation further supports γGlu-Cys's role in apoptosis prevention. CONCLUSIONS: It is concluded that the glutathione precursor γGlu-Cys protects cultured embryonic cardiomyocytes from apoptosis-associated oxidative injury.


Assuntos
Antioxidantes/farmacologia , Asfixia Neonatal/tratamento farmacológico , Dipeptídeos/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Animais , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Asfixia Neonatal/complicações , Linhagem Celular , Dipeptídeos/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Embrião de Mamíferos , Humanos , Recém-Nascido , Traumatismo por Reperfusão Miocárdica/etiologia , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos
15.
Nature ; 516(7530): 198-206, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25503233

RESUMO

Somatic cell reprogramming to a pluripotent state continues to challenge many of our assumptions about cellular specification, and despite major efforts, we lack a complete molecular characterization of the reprograming process. To address this gap in knowledge, we generated extensive transcriptomic, epigenomic and proteomic data sets describing the reprogramming routes leading from mouse embryonic fibroblasts to induced pluripotency. Through integrative analysis, we reveal that cells transition through distinct gene expression and epigenetic signatures and bifurcate towards reprogramming transgene-dependent and -independent stable pluripotent states. Early transcriptional events, driven by high levels of reprogramming transcription factor expression, are associated with widespread loss of histone H3 lysine 27 (H3K27me3) trimethylation, representing a general opening of the chromatin state. Maintenance of high transgene levels leads to re-acquisition of H3K27me3 and a stable pluripotent state that is alternative to the embryonic stem cell (ESC)-like fate. Lowering transgene levels at an intermediate phase, however, guides the process to the acquisition of ESC-like chromatin and DNA methylation signature. Our data provide a comprehensive molecular description of the reprogramming routes and is accessible through the Project Grandiose portal at http://www.stemformatics.org.


Assuntos
Reprogramação Celular/genética , Genoma/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Metilação de DNA , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epistasia Genética/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Histonas/química , Histonas/metabolismo , Internet , Camundongos , Proteoma/genética , Proteômica , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Transcriptoma/genética , Transgenes/genética
17.
Drug Chem Toxicol ; 42(3): 321-327, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30426789

RESUMO

Methyl isocyanate (MIC) is a highly toxic industrial chemical causing acute lethality after inhalation. The objective of this study was to determine whether alterations in hemostasis also occur in the immediate hours after exposure. Male rats were exposed to MIC (125-500 ppm) by nose-only vapor inhalation for 30 min. Arterial O2 saturation was monitored prior to exposure, and hourly thereafter. Rats were euthanized at 1, 2, 4, and 8 hr and plasma analyzed for recalcification clotting time, tissue factor (TF) activity, and protein levels. Hypoxemia, as assessed by pulse oximetry, was an early feature of MIC inhalation. In contrast to sham or low (125 ppm) concentrations, 250 and 500 ppm MIC caused significant declines in blood oxygen saturation (% SpO2) at 1 hr, which remained at deficit during the postexposure period. Commensurate with hypoxemia, plasma clotting time was significantly accelerated 1 hr after MIC inhalation (sham treatment: 955 ± 62.8 s; 125 ppm MIC: 790 ± 62 s; 250 ppm: 676 ± 28.0 s; 500 ppm: 581 ± 175 s). This procoagulant effect was transient, with no difference observed between sham and all MIC groups by 8 hr. Similarly, elevated TF activity and protein were detected in plasma 1 hr after MIC inhalation, each of which showed a progressive decline back to control levels at later timepoints. This study demonstrates that MIC inhalation resulted in hypoxemia and transient hypercoagulability of blood. Accelerated clotting occurred rapidly and was likely due to intravascular TF, which initiates the extrinsic coagulation pathway.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Isocianatos/toxicidade , Tromboplastina/metabolismo , Animais , Relação Dose-Resposta a Droga , Hipóxia/sangue , Hipóxia/induzido quimicamente , Masculino , Oxigênio/sangue , Ratos , Ratos Sprague-Dawley
18.
Am J Respir Cell Mol Biol ; 58(1): 107-116, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28846437

RESUMO

Chlorine is a highly reactive gas that can cause significant injury when inhaled. Unfortunately, its use as a chemical weapon has increased in recent years. Massive chlorine inhalation can cause death within 4 hours of exposure. Survivors usually require hospitalization after massive exposure. No countermeasures are available for massive chlorine exposure and supportive-care measures lack controlled trials. In this work, adult rats were exposed to chlorine gas (LD58-67) in a whole-body exposure chamber, and given oxygen (0.8 FiO2) or air (0.21 FiO2) for 6 hours after baseline measurements were obtained. Oxygen saturation, vital signs, respiratory distress and neuromuscular scores, arterial blood gases, and hemodynamic measurements were obtained hourly. Massive chlorine inhalation caused severe acute respiratory failure, hypoxemia, decreased cardiac output, neuromuscular abnormalities (ataxia and hypotonia), and seizures resulting in early death. Oxygen improved survival to 6 hours (87% versus 42%) and prevented observed seizure-related deaths. However, oxygen administration worsened the severity of acute respiratory failure in chlorine-exposed rats compared with controls, with increased respiratory acidosis (pH 6.91 ± 0.04 versus 7.06 ± 0.01 at 2 h) and increased hypercapnia (180.0 ± 19.8 versus 103.2 ± 3.9 mm Hg at 2 h). In addition, oxygen did not improve neuromuscular abnormalities, cardiac output, or respiratory distress associated with chlorine exposure. Massive chlorine inhalation causes severe acute respiratory failure and multiorgan damage. Oxygen administration can improve short-term survival but appears to worsen respiratory failure, with no improvement in cardiac output or neuromuscular dysfunction. Oxygen should be used with caution after massive chlorine inhalation, and the need for early assisted ventilation should be assessed in victims.


Assuntos
Débito Cardíaco/efeitos dos fármacos , Substâncias para a Guerra Química/toxicidade , Cloro/toxicidade , Oxigênio/farmacologia , Insuficiência Respiratória , Doença Aguda , Animais , Hipercapnia/induzido quimicamente , Hipercapnia/tratamento farmacológico , Hipercapnia/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/tratamento farmacológico , Insuficiência Respiratória/fisiopatologia
19.
Am J Respir Cell Mol Biol ; 58(6): 696-705, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29314868

RESUMO

Inhalation of powerful chemical agents, such as sulfur mustard (SM), can have debilitating pulmonary consequences, such as bronchiolitis obliterans (BO) and parenchymal fibrosis (PF). The underlying pathogenesis of disorders after SM inhalation is not clearly understood, resulting in a paucity of effective therapies. In this study, we evaluated the role of profibrotic pathways involving transforming growth factor-ß (TGF-ß) and platelet-derived growth factor (PDGF) in the development of BO and PF after SM inhalation injury using a rat model. Adult Sprague-Dawley rats were intubated and exposed to SM (1.0 mg/kg), then monitored daily for respiratory distress, oxygen saturation changes, and weight loss. Rats were killed at 7, 14, 21, or 28 days, and markers of injury were determined by histopathology; pulmonary function testing; and assessment of TGF-ß, PDGF, and PAI-1 concentrations. Respiratory distress developed over time after SM inhalation, with progressive hypoxemia, respiratory distress, and weight loss. Histopathology confirmed the presence of both BO and PF, and both gradually worsened with time. Pulmonary function testing demonstrated a time-dependent increase in lung resistance, as well as a decrease in lung compliance. Concentrations of TGF-ß, PDGF, and PAI-1 were elevated at 28 days in lung, BAL fluid, and/or plasma. Time-dependent development of BO and PF occurs in lungs of rats exposed to SM inhalation, and the elevated concentrations of TGF-ß, PDGF, and PAI-1 suggest involvement of these profibrotic pathways in the aberrant remodeling after injury.


Assuntos
Bronquiolite Obliterante/induzido quimicamente , Gás de Mostarda/administração & dosagem , Gás de Mostarda/toxicidade , Fibrose Pulmonar/induzido quimicamente , Administração por Inalação , Animais , Bronquiolite Obliterante/metabolismo , Bronquiolite Obliterante/mortalidade , Bronquiolite Obliterante/patologia , Líquido da Lavagem Broncoalveolar , Substâncias para a Guerra Química/toxicidade , Relação Dose-Resposta a Droga , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/mortalidade , Ratos Sprague-Dawley , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Testes de Função Respiratória , Fator de Crescimento Transformador beta1/metabolismo , Redução de Peso/efeitos dos fármacos
20.
Arterioscler Thromb Vasc Biol ; 37(5): 889-899, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28336559

RESUMO

OBJECTIVE: The function of perivascular adipose tissue as an anticontractile mediator in the microvasculature is lost during obesity. Obesity results in inflammation and recruitment of proinflammatory macrophages to the perivascular adipose tissue that is paralleled by depletion of the vasorelaxant signaling molecule hydrogen sulfide (H2S) in the vessel. The current objective was to assess the role of macrophages in determining vascular [H2S] and defining how this impinged on vasodilation. APPROACH AND RESULTS: Contractility and [H2S] were measured in mesenteric resistance arterioles from lean and obese mice by using pressure myography and confocal microscopy, respectively. Vasodilation was impaired and smooth muscle and endothelial [H2S] decreased in vessels from obese mice compared with those from lean controls. Coculturing vessels from lean mice with macrophages from obese mice, or macrophage-conditioned media, recapitulated obese phenotypes in vessels. These effects were mediated by low molecular weight species and dependent on macrophage inducible nitric oxide synthase activity. CONCLUSIONS: The inducible nitric oxide synthase activity of perivascular adipose tissue-resident proinflammatory macrophages promotes microvascular endothelial dysfunction by reducing the bioavailability of H2S in the vessel. These findings support a model in which vascular H2S depletion underpins the loss of perivascular adipose tissue anticontractile function in obesity.


Assuntos
Tecido Adiposo/metabolismo , Arteríolas/metabolismo , Sulfeto de Hidrogênio/metabolismo , Macrófagos/metabolismo , Mesentério/irrigação sanguínea , Obesidade/metabolismo , Vasodilatação , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/fisiopatologia , Comunicação Celular , Técnicas de Cocultura , Cistationina gama-Liase/deficiência , Cistationina gama-Liase/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Obesidade/fisiopatologia , Técnicas de Cultura de Tecidos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA