Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Diabetologia ; 62(11): 2129-2142, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31399844

RESUMO

AIMS/HYPOTHESIS: Long non-coding RNAs (lncRNAs) are garnering increasing attention for their putative roles in the pathogenesis of chronic diseases, including diabetic kidney disease (DKD). However, much about in vivo lncRNA functionality in the adult organism remains unclear. To better understand lncRNA regulation and function in DKD, we explored the effects of the modular scaffold lncRNA HOTAIR (HOX antisense intergenic RNA), which approximates chromatin modifying complexes to their target sites on the genome. METHODS: Experiments were performed in human kidney tissue, in mice with streptozotocin-induced diabetes, the db/db mouse model of type 2 diabetes, podocyte-specific Hotair knockout mice and conditionally immortalised mouse podocytes. RESULTS: HOTAIR was observed to be expressed by several kidney cell-types, including glomerular podocytes, in both human and mouse kidneys. However, knockout of Hotair from podocytes had almost no effect on kidney structure, function or ultrastructure. Glomerular HOTAIR expression was found to be increased in human DKD, in the kidneys of mice with streptozotocin-induced diabetes and in the kidneys of db/db mice. Likewise, exposure of cultured mouse podocytes to high glucose caused upregulation of Hotair expression, which occurred in a p65-dependent manner. Although HOTAIR expression was upregulated in DKD and in high glucose-exposed podocytes, its knockout did not alter the development of kidney damage in diabetic mice. Rather, in a bioinformatic analysis of human kidney tissue, HOTAIR expression closely paralleled the expression of its genic neighbour, HOXC11, which is important to developmental patterning but which has an uncertain role in the adult kidney. CONCLUSIONS/INTERPRETATION: Many lncRNAs have been found to bind to the same chromatin modifying complexes. Thus, there is likely to exist sufficient redundancy in the system that the biological effects of dysregulated lncRNAs in kidney disease may often be inconsequential. The example of the archetypal scaffold lncRNA, HOTAIR, illustrates how lncRNA dysregulation may be a bystander in DKD without necessarily contributing to the pathogenesis of the condition. In the absence of in vivo validation, caution should be taken before ascribing major functional roles to single lncRNAs in the pathogenesis of chronic diseases.


Assuntos
Nefropatias Diabéticas/metabolismo , Regulação da Expressão Gênica , RNA Longo não Codificante/metabolismo , Animais , Padronização Corporal , Cromatina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Hibridização In Situ , Glomérulos Renais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Podócitos/citologia , Podócitos/metabolismo , RNA Longo não Codificante/genética
2.
J Pathol ; 246(4): 485-496, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30125361

RESUMO

Planar cell polarity (PCP) pathways control the orientation and alignment of epithelial cells within tissues. Van Gogh-like 2 (Vangl2) is a key PCP protein that is required for the normal differentiation of kidney glomeruli and tubules. Vangl2 has also been implicated in modifying the course of acquired glomerular disease, and here, we further explored how Vangl2 impacts on glomerular pathobiology in this context. Targeted genetic deletion of Vangl2 in mouse glomerular epithelial podocytes enhanced the severity of not only irreversible accelerated nephrotoxic nephritis but also lipopolysaccharide-induced reversible glomerular damage. In each proteinuric model, genetic deletion of Vangl2 in podocytes was associated with an increased ratio of active-MMP9 to inactive MMP9, an enzyme involved in tissue remodelling. In addition, by interrogating microarray data from two cohorts of renal patients, we report increased VANGL2 transcript levels in the glomeruli of individuals with focal segmental glomerulosclerosis, suggesting that the molecule may also be involved in certain human glomerular diseases. These observations support the conclusion that Vangl2 modulates glomerular injury, at least in part by acting as a brake on MMP9, a potentially harmful endogenous enzyme. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Polaridade Celular , Glomerulosclerose Segmentar e Focal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glomérulos Renais/metabolismo , Proteínas de Membrana/metabolismo , Nefrose Lipoide/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Podócitos/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Nefrose Lipoide/genética , Nefrose Lipoide/patologia , Nefrose Lipoide/fisiopatologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Podócitos/patologia , Transdução de Sinais , Adulto Jovem
3.
J Am Soc Nephrol ; 28(9): 2641-2653, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28424277

RESUMO

The nonreceptor kinase Janus kinase 2 (JAK2) has garnered attention as a promising therapeutic target for the treatment of CKD. However, being ubiquitously expressed in the adult, JAK2 is also likely to be necessary for normal organ function. Here, we investigated the phenotypic effects of JAK2 deficiency. Mice in which JAK2 had been deleted from podocytes exhibited an elevation in urine albumin excretion that was accompanied by increased podocyte autophagosome fractional volume and p62 aggregation, which are indicative of impaired autophagy completion. In cultured podocytes, knockdown of JAK2 similarly impaired autophagy and led to downregulation in the expression of lysosomal genes and decreased activity of the lysosomal enzyme, cathepsin D. Because transcription factor EB (TFEB) has recently emerged as a master regulator of autophagosome-lysosome function, controlling the expression of several of the genes downregulated by JAK2 knockdown, we questioned whether TFEB is regulated by JAK2. In immortalized mouse podocytes, JAK2 knockdown decreased TFEB promoter activity, expression, and nuclear localization. In silico analysis and chromatin immunoprecipitation assays revealed that the downstream mediator of JAK2 signaling STAT1 binds to the TFEB promoter. Finally, overexpression of TFEB in JAK2-deficient podocytes reversed lysosomal dysfunction and restored albumin permselectivity. Collectively, these observations highlight the homeostatic actions of JAK2 in podocytes and the importance of TFEB to autophagosome-lysosome function in these cells. These results also raise the possibility that therapeutically modulating TFEB activity may improve podocyte health in glomerular disease.


Assuntos
Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Janus Quinase 2/genética , Podócitos/metabolismo , Albuminúria/genética , Animais , Autofagossomos/ultraestrutura , Catepsina D/metabolismo , Células Cultivadas , Simulação por Computador , Regulação para Baixo , Técnicas de Silenciamento de Genes , Janus Quinase 2/deficiência , Janus Quinase 2/metabolismo , Glomérulos Renais/citologia , Lisossomos/ultraestrutura , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Peptídeos/metabolismo , Fenótipo , Podócitos/ultraestrutura , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
4.
J Am Soc Nephrol ; 27(7): 2021-34, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26534922

RESUMO

Epigenetic regulation of oxidative stress is emerging as a critical mediator of diabetic nephropathy. In diabetes, oxidative damage occurs when there is an imbalance between reactive oxygen species generation and enzymatic antioxidant repair. Here, we investigated the function of the histone methyltransferase enzyme enhancer of zeste homolog 2 (EZH2) in attenuating oxidative injury in podocytes, focusing on its regulation of the endogenous antioxidant inhibitor thioredoxin interacting protein (TxnIP). Pharmacologic or genetic depletion of EZH2 augmented TxnIP expression and oxidative stress in podocytes cultured under high-glucose conditions. Conversely, EZH2 upregulation through inhibition of its regulatory microRNA, microRNA-101, downregulated TxnIP and attenuated oxidative stress. In diabetic rats, depletion of EZH2 decreased histone 3 lysine 27 trimethylation (H3K27me3), increased glomerular TxnIP expression, induced podocyte injury, and augmented oxidative stress and proteinuria. Chromatin immunoprecipitation sequencing revealed H3K27me3 enrichment at the promoter of the transcription factor Pax6, which was upregulated on EZH2 depletion and bound to the TxnIP promoter, controlling expression of its gene product. In high glucose-exposed podocytes and the kidneys of diabetic rats, the lower EZH2 expression detected coincided with upregulation of Pax6 and TxnIP. Finally, in a gene expression array, TxnIP was among seven of 30,854 genes upregulated by high glucose, EZH2 depletion, and the combination thereof. Thus, EZH2 represses the transcription factor Pax6, which controls expression of the antioxidant inhibitor TxnIP, and in diabetes, downregulation of EZH2 promotes oxidative stress. These findings expand the extent to which epigenetic processes affect the diabetic kidney to include antioxidant repair.


Assuntos
Nefropatias Diabéticas/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Estresse Oxidativo , Podócitos/metabolismo , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Regulação para Cima
5.
Kidney Int ; 90(5): 1056-1070, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27575556

RESUMO

Glomerular disease is characterized by morphologic changes in podocyte cells accompanied by inflammation and fibrosis. Thymosin ß4 regulates cell morphology, inflammation, and fibrosis in several organs and administration of exogenous thymosin ß4 improves animal models of unilateral ureteral obstruction and diabetic nephropathy. However, the role of endogenous thymosin ß4 in the kidney is unknown. We demonstrate that thymosin ß4 is expressed prominently in podocytes of developing and adult mouse glomeruli. Global loss of thymosin ß4 did not affect healthy glomeruli, but accelerated the severity of immune-mediated nephrotoxic nephritis with worse renal function, periglomerular inflammation, and fibrosis. Lack of thymosin ß4 in nephrotoxic nephritis led to the redistribution of podocytes from the glomerular tuft toward the Bowman capsule suggesting a role for thymosin ß4 in the migration of these cells. Thymosin ß4 knockdown in cultured podocytes also increased migration in a wound-healing assay, accompanied by F-actin rearrangement and increased RhoA activity. We propose that endogenous thymosin ß4 is a modifier of glomerular injury, likely having a protective role acting as a brake to slow disease progression.


Assuntos
Glomerulonefrite/metabolismo , Podócitos/metabolismo , Timosina/metabolismo , Animais , Movimento Celular , Células Cultivadas , Citoesqueleto/metabolismo , Fibrose , Glomerulonefrite/patologia , Glomérulos Renais/patologia , Macrófagos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
J Am Soc Nephrol ; 25(1): 33-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24009238

RESUMO

Vascular growth factors play an important role in maintaining the structure and integrity of the glomerular filtration barrier. In healthy adult glomeruli, the proendothelial survival factors vascular endothelial growth factor-A (VEGF-A) and angiopoietin-1 are constitutively expressed in glomerular podocyte epithelia. We demonstrate that this milieu of vascular growth factors is altered in streptozotocin-induced type 1 diabetic mice, with decreased angiopoietin-1 levels, VEGF-A upregulation, decreased soluble VEGF receptor-1 (VEGFR1), and increased VEGFR2 phosphorylation. This was accompanied by marked albuminuria, nephromegaly, hyperfiltration, glomerular ultrastructural alterations, and aberrant angiogenesis. We subsequently hypothesized that restoration of angiopoietin-1 expression within glomeruli might ameliorate manifestations of early diabetic glomerulopathy. Podocyte-specific inducible repletion of angiopoietin-1 in diabetic mice caused a 70% reduction of albuminuria and prevented diabetes-induced glomerular endothelial cell proliferation; hyperfiltration and renal morphology were unchanged. Furthermore, angiopoietin-1 repletion in diabetic mice increased Tie-2 phosphorylation, elevated soluble VEGFR1, and was paralleled by a decrease in VEGFR2 phosphorylation and increased endothelial nitric oxide synthase Ser(1177) phosphorylation. Diabetes-induced nephrin phosphorylation was also reduced in mice with angiopoietin-1 repletion. In conclusion, targeted angiopoietin-1 therapy shows promise as a renoprotective tool in the early stages of diabetic kidney disease.


Assuntos
Angiopoietina-1/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/terapia , Terapia de Alvo Molecular , Angiopoietina-1/deficiência , Angiopoietina-1/genética , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Nefropatias Diabéticas/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Mutantes , Podócitos/metabolismo , Podócitos/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
J Am Soc Nephrol ; 23(11): 1810-23, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22997257

RESUMO

Endothelial nitric oxide synthase (eNOS) deficiency may contribute to the pathogenesis of diabetic nephropathy in both experimental models and humans, but the underlying mechanism is not fully understood. Here, we studied two common sequelae of endothelial dysfunction in diabetes: glomerular capillary growth and effects on neighboring podocytes. Streptozotocin-induced diabetes increased glomerular capillary volume in both C57BL/6 and eNOS(-/-) mice. Inhibiting the vascular endothelial growth factor receptor attenuated albuminuria in diabetic C57BL/6 mice but not in diabetic eNOS(-/-) mice, even though it inhibited glomerular capillary enlargement in both. In eNOS(-/-) mice, an acute podocytopathy and heavy albuminuria occurred as early as 2 weeks after inducing diabetes, but treatment with either captopril or losartan prevented these effects. In vitro, serum derived from diabetic eNOS(-/-) mice augmented actin filament rearrangement in cultured podocytes. Furthermore, conditioned medium derived from eNOS(-/-) glomerular endothelial cells exposed to both high glucose and angiotensin II activated podocyte RhoA. Taken together, these results suggest that the combined effects of eNOS deficiency and hyperglycemia contribute to podocyte injury, highlighting the importance of communication between endothelial cells and podocytes in diabetes. Identifying mediators of this communication may lead to the future development of therapies targeting endothelial dysfunction in albuminuric individuals with diabetes.


Assuntos
Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Óxido Nítrico Sintase Tipo III/deficiência , Podócitos/metabolismo , Podócitos/patologia , Albuminúria/etiologia , Albuminúria/prevenção & controle , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Capilares/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/etiologia , Modelos Animais de Doenças , Glucose/metabolismo , Humanos , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/genética , Podócitos/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
9.
Data Brief ; 50: 109465, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37600596

RESUMO

The data described support the research article entitled "Interseeded cover crop mixtures influence soil water storage during the corn phase of corn-soybean-wheat no-till cropping systems". Data were collected during the corn (Zea mays L.) phase from rotations with four different cover crop (CC) treatments. The study was conducted at the USDA research facility in Beltsville, MD from 2017 through 2020. The data are available from a repository at Ag Data Commons. Descriptions of crop rotations, soil water and temperature sensors, placement, and frequency of measurements are provided in the manuscript and repository. Hourly volumetric soil water content (m3 m-3) (VWC) and soil temperature (°C) data for each soil depth (0-12, 25-35, 50-60, 75-85 cm) are available from the repository. In the manuscript, daily values of soil water storage were used to estimate daily evapotranspiration (ET) and infiltration. A text file of meta information is provided in the repository describing data collection procedures, estimation of ET and infiltration, and methods used to replace sensor data having errors. Daily precipitation, maximum and minimum temperatures, net solar radiation, and windspeed collected at a nearby weather station are provided for estimating growing degree days and potential ET. Cover crop biomass (kg ha-1) prior to corn planting and corn yields are provided by replication and cover crop system treatment for the four years.

10.
Am J Pathol ; 178(5): 2205-14, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21514434

RESUMO

Epigenetic changes in gene expression play a role in the development of diabetic complications, including nephropathy. Histone deacetylases (HDACs) are a group of enzymes that exert epigenetic effects by altering the acetylation status of histone and nonhistone proteins. In the current study, we investigated the action of the clinically available HDAC inhibitor vorinostat in a mouse model of diabetic nephropathy, with the following aims: to define its effect on the progression of renal injury and to explore its mechanism of action by focusing on its role in regulating the expression of endothelial nitric oxide synthase (eNOS). Control and streptozotocin-diabetic wild-type and eNOS(-/-) mice were treated with vorinostat by daily oral dosing for 18 weeks. Without affecting either blood glucose concentration or blood pressure, vorinostat decreased albuminuria, mesangial collagen IV deposition, and oxidative-nitrosative stress in streptozotocin-wild-type mice. These attenuating effects were associated with a >50% reduction in eNOS expression in mouse kidneys and in cultured human umbilical vein endothelial cells. Vorinostat treatment had no effect on albuminuria, glomerular collagen IV concentration, or mesangiolysis in diabetic mice genetically deficient in eNOS. These observations illustrate the therapeutic efficacy of long-term HDAC inhibition in diabetic nephropathy and emphasize the importance of the interplay between eNOS activity and oxidative stress in mediating these effects.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Western Blotting , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vorinostat
11.
Arthritis Rheum ; 63(3): 795-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21360509

RESUMO

OBJECTIVE: To describe the cellular source of transforming growth factor ß (TGFß) in the dermis of patients with systemic sclerosis (SSc). METHODS: We performed electron microscopy (EM) with immunogold labeling on skin biopsy specimens from 7 patients with SSc and 3 healthy control subjects. For TGFß quantification, the numbers of gold particles per square micron were calculated. The origin of mast cells was confirmed and quantified by toluidine blue staining and light microscopy. Degranulation was assessed on toluidine blue-stained sections and on EM images. RESULTS: In all patients, active TGFß was observed uniquely in mast cell vesicles, some of which were released into the extracellular space. Patients with progressive SSc and a more recent onset of non-Raynaud's phenomenon symptoms had higher numbers of mast cells and gold particles per mast cell. Mast cells from healthy control subjects also contained active TGFß but, in contrast to SSc samples, showed a resting character with no or low-level degranulation and uniformly dense osmiophilic vesicles. CONCLUSION: Degranulation of skin mast cells can be an important mechanism of TGFß secretion in SSc.


Assuntos
Mastócitos/metabolismo , Esclerodermia Difusa/metabolismo , Esclerodermia Limitada/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Idoso , Biópsia , Degranulação Celular/fisiologia , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/patologia , Derme/metabolismo , Derme/patologia , Feminino , Humanos , Masculino , Mastócitos/diagnóstico por imagem , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Esclerodermia Difusa/patologia , Esclerodermia Limitada/patologia , Ultrassonografia
12.
PLoS One ; 17(4): e0267757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482753

RESUMO

Efficient use of nitrogen (N) is essential to protect water quality in high-input organic vegetable production systems, but little is known about the long-term effects of organic management on N mass balances. We measured soil N and tabulated N inputs (organic fertilizers, compost, irrigation water, atmospheric deposition, cover crop seed, vegetable transplant plugs and fixation by legume cover crops) and exports in harvested crops (lettuce, broccoli) over eight years to calculate soil surface and soil system N mass balances for the Salinas Organic Cropping Systems study in Salinas, CA. Our objectives were to 1) quantify the long-term effects of compost, cover crop frequency and cover crop type on soil N, cover crop and vegetable crop N uptake, and yield, and 2) tabulate N balances to assess the effects of these factors on N export in harvested crops, soil N storage and potential N loss. Results show that across all systems only 13 to 23% of N inputs were exported in harvest. Annual compost applications increased soil N stocks but had little effect on vegetable N uptake or yield, increasing the cumulative soil system N balance surplus over eight years by 999 kg ha-1, relative to the system receiving organic fertilizers alone. Annually planted winter cover crops increased N availability, crop uptake and export; however, biological N fixation by legumes negated the positive effect of increased harvest exports on the balance surplus in the legume-rye cover cropped system. Over eight years, rye cover crops improved system performance and reduced the cumulative N surplus by 384 kg ha-1 relative to the legume-rye mixture by increasing N retention and availability without increasing N inputs. Reduced reliance on external compost inputs and increased use of annually planted non-legume cover crops can improve efficient N use and cropping system yield, consequently improving environmental performance.


Assuntos
Fabaceae , Nitrogênio , Agricultura/métodos , Produtos Agrícolas , Fertilizantes/análise , Solo , Verduras
13.
J Electron Microsc (Tokyo) ; 59(2): 153-64, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19854955

RESUMO

Light and electron microscopy and quantitative morphometry were used to determine the effects of exercise and mesterolone on the soleus muscles of mice. Both exercise and mesterolone caused a significant hypertrophy of extrafusal muscle fibres. The hypertrophy of Type I fibres was greater than that of Type II fibres. There was no hyperplasia. Mitochondria were more numerous and larger than in the muscles of sedentary animals. Capillarity increased and small centrally nucleated muscle fibres appeared, usually in small clusters and most often in the muscles of animals exposed to mesterolone. A small proportion of satellite cells exhibited signs of activation but there were more in the muscles of mesterolone-treated animals than after exercise. Muscles from animals that had been both exercised and treated with mesterolone exhibited the largest changes: muscle mass and muscle fibre hypertrophy was greater than in all other groups of animals, capillarity was higher and >30% of all recognized satellite cells exhibited signs of activation. Groups of small centrally nucleated muscle fibres were commonly seen in these muscles. They appeared to be the result of splits in the form of sprouts from existing muscle fibres. With both exercise and mesterolone, alone or in combination, there was an increase in the proportion of Type I muscle fibres and a decrease in the proportion of Type II.


Assuntos
Anabolizantes/farmacologia , Mesterolona/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/ultraestrutura , Esforço Físico , Anabolizantes/administração & dosagem , Animais , Humanos , Hipertrofia , Masculino , Mesterolona/administração & dosagem , Camundongos , Microscopia/métodos , Microscopia Eletrônica de Transmissão
14.
Methods Mol Biol ; 2067: 89-102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31701447

RESUMO

In this chapter we describe conventional methods used for preparing renal tissue for transmission electron microscopy. We also describe a relatively new technique, serial block face scanning electron microscopy. Protocols are given for processing, sectioning, and imaging of tissue along with methods for obtaining quantitative data from the results.


Assuntos
Técnicas de Preparação Histocitológica/métodos , Glomérulos Renais/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Animais , Biópsia , Humanos , Imageamento Tridimensional , Glomérulos Renais/patologia
15.
Data Brief ; 33: 106481, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294503

RESUMO

Data presented are on carbon (C) and nitrogen (N) inputs, and changes in soil C and N in eight systems during the first eight years of a tillage-intensive organic vegetable systems study that was focused on romaine lettuce and broccoli production in Salinas Valley on the central coast region of California. The eight systems differed in organic matter inputs from cover crops and urban yard-waste compost. The cover crops included cereal rye, a legume-rye mixture, and a mustard mixture planted at two seeding rates (standard rate 1x versus high rate 3x). There were three legume-rye 3x systems that differed in compost inputs (0 versus 7.6 Mg ha-1 vegetable crop-1) and cover cropping frequency (every winter versus every fourth winter). The data include: (1) changes in soil total organic C and total N concentrations and stocks and nitrate N (NO3-N) concentrations over 8 years, (2) cumulative above ground and estimated below ground C and N inputs, cover crop and crop N uptake, and harvested crop N export over 8 years, (3) soil permanganate oxidizable carbon (POX-C) concentrations and stocks at time 0, 6 and 8 years, and (4) cumulative, estimated yields of lettuce and broccoli (using total biomass and harvest index values) over the 8 years. The C inputs from the vegetables and cover crops included estimates of below ground inputs based on shoot biomass and literature values for shoot:root. The data in this article support and augment information presented in the research article "Winter cover crops increase readily decomposable soil carbon, but compost drives total soil carbon during eight years of intensive, organic vegetable production in California".

16.
PLoS One ; 15(2): e0228677, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027701

RESUMO

Maintaining soil organic carbon (SOC) in frequently tilled, intensive organic vegetable production systems is a challenge that is not well understood. Compost and cover crops are often used to add organic matter to the soil in these systems. Compost contributes relatively stabilized carbon (C) while cover crops provide readily degradable (labile) organic matter. Our objectives were to quantify C inputs, and to assess the effects of urban yard-waste compost, winter cover crop frequency and cover crop type on SOC and labile C stocks during eight years of intensive, organic production that usually included two vegetable crops per year in a long-term systems study in Salinas, California. Total C inputs from pelleted fertilizer, compost, vegetable transplant potting mix, vegetable residue and cover crops, including estimates of below ground inputs, ranged from 40 to 108 Mg ha-1 in the five systems evaluated. Following a rapid decline in SOC stocks in year 1, compost had the largest effect on SOC stocks increasing mean SOC over years 2 to 8 by an average of 9.4 Mg ha-1, while increased cover crop frequency (annual vs. quadrennial) led to an additional 3.4 Mg ha-1 increase. In contrast, cover cropping frequency had the largest effect on permanganate oxidizable labile C (POX-C), increasing POX-C by 26% after 8 years. Labile POX-C was well correlated with microbial biomass C and nitrogen. Compost had the greatest effect on total SOC stocks, while increasing cover crop frequency altered the composition of SOC by increasing the proportion of labile C. These results suggest that frequent winter cover cropping has a greater potential than compost to increase nutrient availability and vegetable yields in high-input, tillage intensive vegetable systems.


Assuntos
Carbono/análise , Produtos Agrícolas/crescimento & desenvolvimento , Solo/química , California , Compostagem , Estações do Ano , Verduras
17.
Brain ; 131(Pt 2): 368-80, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18222992

RESUMO

Opa3 mRNA is expressed in all tissues examined to date, but currently the function of the OPA3 protein is unknown. Intriguingly, various mutations in the OPA3 gene lead to two similar diseases in humans: autosomal dominant inherited optic atrophy and cataract (ADOAC) and a metabolic condition; type 3-methylglutaconic aciduria (MGA). Early onset bilateral optic atrophy is a common characteristic of both disorders; retinal ganglion cells are lost and visual acuity is impaired from an early age. In order to investigate the function of the OPA3 protein, we have generated a novel ENU-induced mutant mouse carrying a missense mutation in the OPA3 gene. The heterozygous mutation in exon 2, causes an amino acid change p.L122P (c.365T>C), which is predicted to alter tertiary protein structure. In the heterozygous state, the mice appear uncompromised however; in the homozygous state mice display some of the features of MGA. Visual function is severely reduced, consistent with significant loss of retinal ganglion cells and degeneration of axons in the optic nerve. In the homozygous optic nerve, there was evidence of increased mitochondrial activity, as demonstrated by the increased presence of mitochondrial marker Cytochrome C Oxidase (COX) histochemistry. Mice homozygous for the opa3(L122P) mutation also display a severe multi-systemic disease characterized by reduced lifespan (majority dying before 4 months), decreased weight, dilated cardiomyopathy, extrapyramidal dysfunction and gross neuro-muscular defects. All of these defects are synonymous with the phenotypic characteristics of Type III MGA found in humans. This model will be of major importance for future studies of the specific function of the OPA3 gene.


Assuntos
Modelos Animais de Doenças , Mutação de Sentido Incorreto , Atrofia Óptica Autossômica Dominante/genética , Proteínas/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/ultraestrutura , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Glutaratos/urina , Humanos , Camundongos , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , Atrofia Óptica Autossômica Dominante/fisiopatologia , Nervo Óptico/ultraestrutura , Fenótipo , Mutação Puntual , Células Ganglionares da Retina/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Medula Espinal/ultraestrutura , Síndrome , Transcrição Gênica , Acuidade Visual
18.
J Dev Behav Pediatr ; 40(9): 659-668, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31658112

RESUMO

Increased visibility of adverse encounters between individuals with autism spectrum disorder (ASD) and law enforcement (LE) has stimulated a dialog among providers. There are a variety of contributing factors to the increase, including the recognized lack of training of LE professionals on the needs of individuals with ASD and the paucity of awareness of resources by the families of these individuals. The aim of this article is to provide insight into developmental-behavioral pediatric professionals, to enhance safety and reduce adverse outcomes for individuals with ASD in schools and the community.


Assuntos
Transtorno do Espectro Autista , Colaboração Intersetorial , Aplicação da Lei , Segurança do Paciente , Polícia , Adolescente , Humanos , Masculino , Polícia/educação , Polícia/normas
19.
Diabetes ; 68(9): 1841-1852, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31217174

RESUMO

Damage to the vasculature is the primary mechanism driving chronic diabetic microvascular complications such as diabetic nephropathy, which manifests as albuminuria. Therefore, treatments that protect the diabetic vasculature have significant therapeutic potential. Soluble neurite outgrowth inhibitor-B (sNogo-B) is a circulating N-terminus isoform of full-length Nogo-B, which plays a key role in vascular remodeling following injury. However, there is currently no information on the role of sNogo-B in the context of diabetic nephropathy. We demonstrate that overexpression of sNogo-B in the circulation ameliorates diabetic kidney disease by reducing albuminuria, hyperfiltration, and abnormal angiogenesis and protecting glomerular capillary structure. Systemic sNogo-B overexpression in diabetic mice also associates with dampening vascular endothelial growth factor-A signaling and reducing endothelial nitric oxide synthase, AKT, and GSK3ß phosphorylation. Furthermore, sNogo-B prevented the impairment of tube formation, which occurred when human endothelial cells were exposed to sera from patients with diabetic kidney disease. Collectively, these studies provide the first evidence that sNogo-B protects the vasculature in diabetes and may represent a novel therapeutic target for diabetic vascular complications.


Assuntos
Capilares/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glomérulos Renais/irrigação sanguínea , Proteínas Nogo/metabolismo , Angiopoietina-1/metabolismo , Angiopoietina-2/metabolismo , Animais , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/genética , Humanos , Glomérulos Renais/metabolismo , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Nogo/sangue , Proteínas Nogo/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Kidney Int ; 74(3): 300-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18480750

RESUMO

The loss of interstitial capillaries is a feature of several experimental models of renal disease and this contributes to secondary kidney injury. Angiopoietin-1 is a secreted growth factor which binds to Tie-2 present on endothelia to enhance cell survival thereby stabilizing capillary architecture in-vitro. Previous studies showed that angiopoietin-1 prevented renal capillary and interstitial lesions following experimental ureteric obstruction. We tested here the effect of angiopoietin-1 treatment on capillary loss and associated tubulointerstitial damage known to follow recovery from folic acid-induced tubular necrosis and acute renal injury. We found that delivery of angiopoietin-1 by adenoviral vectors stabilized peritubular capillaries in folic acid nephropathy but this was accompanied by profibrotic and inflammatory effects. These results suggest that the use of endothelial growth factor therapy for kidney disease may have varying outcomes that depend on the disease model tested.


Assuntos
Angiopoietina-1/efeitos adversos , Fibrose/induzido quimicamente , Inflamação/induzido quimicamente , Necrose Tubular Aguda/tratamento farmacológico , Adenoviridae/genética , Angiopoietina-1/administração & dosagem , Angiopoietina-1/uso terapêutico , Animais , Modelos Animais de Doenças , Ácido Fólico/efeitos adversos , Vetores Genéticos , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Necrose Tubular Aguda/induzido quimicamente , Necrose Tubular Aguda/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Circulação Renal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA