Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Cell Physiol ; 233(3): 2343-2359, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28722139

RESUMO

Agnoprotein (Agno) is an important regulatory protein of JC virus (JCV), BK virus (BKV) and simian virus 40 (SV40) and these viruses are unable to replicate efficiently in the absence of this protein. Recent 3D-NMR structural data revealed that Agno contains two alpha-helices (a minor and a major) while the rest of the protein adopts an unstructured conformation (Coric et al., 2017, J Cell Biochem). Previously, release of the JCV Agno from the Agno-positive cells was reported. Here, we have further mapped the regions of Agno responsible for its release by a structure-based systematic mutagenesis approach. Results revealed that amino acid residues (Lys22, Lys23, Phe31, Glu34, and Asp38) located either on or adjacent to the hydrophilic surface of the major alpha-helix domain of Agno play critical roles in release. Additionally, Agno was shown to strongly interact with unidentified components of the cell surface when cells are treated with Agno, suggesting additional novel roles for Agno during the viral infection cycle.


Assuntos
Vírus JC/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Vírus JC/genética , Vírus JC/crescimento & desenvolvimento , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Deleção de Sequência , Relação Estrutura-Atividade , Propriedades de Superfície , Transfecção , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/genética
2.
J Cell Physiol ; 233(5): 4137-4155, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29044559

RESUMO

Although the human neurotropic polyomavirus, JC virus (JCV), was isolated almost a half century ago, understanding the molecular mechanisms governing its biology remains highly elusive. JCV infects oligodendrocytes and astrocytes in the central nervous system (CNS) and causes a rare fatal brain disease known as progressive multifocal leukoencephalopathy (PML) in immunocompromised individuals including AIDS. It has a small circular DNA genome (∼5 kb) and generates two primary transcripts from its early and late coding regions, producing several predicted alternatively spliced products mainly by cis-splicing. Here, we report the discovery and characterization of two novel open reading frames (ORF1 and ORF2) associated with JCV late transcripts, generated by an unusual splicing process called trans-splicing. These ORFs result from (i) the trans-splicing of two different lengths of the 5'-short coding region of VP1 between the coding regions of agnoprotein and VP2 after replacing the intron located between these two coding regions and (ii) frame-shifts occurring within the VP2 coding sequences terminated by a stop codon. ORF1 and ORF2 are capable of encoding 58 and 72 aa long proteins respectively and are expressed in infected cells and PML patients. Each ORF protein shares a common coding region with VP1 and has a unique coding sequence of their own. When the expression of the unique coding regions of ORFs is blocked by a stop codon insertion in the viral background, the mutant virus replicates less efficiently when compared to wild-type, suggesting that the newly discovered ORFs play critical roles in the JCV life cycle.


Assuntos
Vírus JC/genética , Leucoencefalopatia Multifocal Progressiva/genética , Polyomavirus/genética , Trans-Splicing/genética , Encéfalo/virologia , Códon de Terminação/genética , DNA Viral/classificação , DNA Viral/genética , Éxons/genética , Regulação Viral da Expressão Gênica , Genoma Viral/genética , Humanos , Vírus JC/patogenicidade , Leucoencefalopatia Multifocal Progressiva/virologia , Fases de Leitura Aberta , Polyomavirus/patogenicidade , Replicação Viral/genética
3.
Cell Mol Life Sci ; 74(13): 2439-2450, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28210784

RESUMO

HIV/AIDS remains a major public health issue. In 2014, it was estimated that 36.9 million people are living with HIV worldwide, including 2.6 million children. Since the advent of combination antiretroviral therapy (cART), in the 1990s, treatment has been so successful that in many parts of the world, HIV has become a chronic condition in which progression to AIDS has become increasingly rare. However, while people with HIV can expect to live a normal life span with cART, lifelong medication is required and cardiovascular, renal, liver, and neurologic diseases are still possible, which continues to prompt research for a cure for HIV. Infected reservoir cells, such as CD4+ T cells and myeloid cells, allow persistence of HIV as an integrated DNA provirus and serve as a potential source for the re-emergence of virus. Attempts to eradicate HIV from these cells have focused mainly on the so-called "shock and kill" approach, where cellular reactivation is induced so as to trigger the purging of virus-producing cells by cytolysis or immune attack. This approach has several limitations and its usefulness in clinical applications remains to be assessed. Recent advances in gene-editing technology have allowed the use of this approach for inactivating integrated proviral DNA in the genome of latently infected cells or knocking out HIV receptors. Here, we review this strategy and its potential to eliminate the latent HIV reservoir resulting in a sterile cure of AIDS.


Assuntos
Síndrome da Imunodeficiência Adquirida/genética , Síndrome da Imunodeficiência Adquirida/terapia , Edição de Genes , Terapia Genética , HIV-1/genética , Humanos , Evasão da Resposta Imune/genética , Mutação/genética
4.
J Cell Biochem ; 118(11): 3586-3594, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28460414

RESUMO

The CRISPR or clustered regularly interspaced short palindromic repeats system is currently the most advanced approach to genome editing and is notable for providing an unprecedented degree of specificity, effectiveness, and versatility in genetic manipulation. CRISPR evolved as a prokaryotic immune system to provide an acquired immunity and resistance to foreign genetic elements such as bacteriophages. It has recently been developed into a tool for the specific targeting of nucleotide sequences within complex eukaryotic genomes for the purpose of genetic manipulation. The power of CRISPR lies in its simplicity and ease of use, its flexibility to be targeted to any given nucleotide sequence by the choice of an easily synthesized guide RNA, and its ready ability to continue to undergo technical improvements. Applications for CRISPR are numerous including creation of novel transgenic cell animals for research, high-throughput screening of gene function, potential clinical gene therapy, and nongene-editing approaches such as modulating gene activity and fluorescent tagging. In this prospect article, we will describe the salient features of the CRISPR system with an emphasis on important drawbacks and considerations with respect to eliminating off-target events and obtaining efficient CRISPR delivery. We will discuss recent technical developments to the system and we will illustrate some of the most recent applications with an emphasis on approaches to eliminate human viruses including HIV-1, JCV and HSV-1 and prospects for the future. J. Cell. Biochem. 118: 3586-3594, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Pesquisa Biomédica/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Animais , Pesquisa Biomédica/tendências , Edição de Genes/tendências , Humanos
5.
J Cell Biochem ; 118(10): 3268-3280, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28295503

RESUMO

Agnoprotein is an important regulatory protein of the human polyoma JC virus (JCV) and plays critical roles during the viral replication cycle. It forms highly stable dimers and oligomers through its Leu/Ile/Phe-rich domain, which is important for the stability and function of the protein. We recently resolved the partial 3D structure of this protein by NMR using a synthetic peptide encompassing amino acids Thr17 to Gln52, where the Leu/Ile/Phe- rich region was found to adopt a major alpha-helix conformation spanning amino acids 23-39. Here, we report the resolution of the 3D structure of full-length JCV agnoprotein by NMR, which not only confirmed the existence of the previously reported major α-helix domain at the same position but also revealed the presence of an additional minor α-helix region spanning amino acid residues Leu6 to lys13. The remaining regions of the protein adopt an intrinsically unstructured conformation. J. Cell. Biochem. 118: 3268-3280, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Vírus JC/química , Ressonância Magnética Nuclear Biomolecular , Proteínas Virais Reguladoras e Acessórias/química , Humanos , Estrutura Secundária de Proteína
6.
Ann Neurol ; 80(4): 479-89, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27464346

RESUMO

The emergence of Zika virus in the Americas has followed a pattern that is familiar from earlier epidemics of other viruses, where a new disease is introduced into a human population and then spreads rapidly with important public health consequences. In the case of Zika virus, an accumulating body of recent evidence implicates the virus in the etiology of serious pathologies of the human nervous system, that is, the occurrence of microcephaly in neonates and Guillain-Barré syndrome in adults. Zika virus is an arbovirus (arthropod-borne virus) and a member of the family Flaviviridae, genus Flavivirus. Zika virions are enveloped and icosahedral, and contain a nonsegmented, single-stranded, positive-sense RNA genome, which encodes 3 structural and 7 nonstructural proteins that are expressed as a single polyprotein that undergoes cleavage. Zika genomic RNA replicates in the cytoplasm of infected host cells. Zika virus was first detected in 1947 in the blood of a febrile monkey in Uganda's Zika Forest and in crushed suspensions of the Aedes mosquito, which is one of the vectors for Zika virus. The virus remained obscure, with a few human cases confined to Africa and Asia. There are two lineages of the Zika virus, African and Asian, with the Asian strain causing outbreaks in Micronesia in 2007 and French Polynesia in 2013-2014. From here, the virus spread to Brazil with the first report of autochthonous Zika transmission in the Americas in March 2015. The rapid advance of the virus in the Americas and its likely association with microcephaly and Guillain-Barré syndrome make Zika an urgent public health concern. Ann Neurol 2016;80:479-489.


Assuntos
Síndrome de Guillain-Barré/etiologia , Microcefalia/etiologia , Infecção por Zika virus/complicações , Zika virus/genética , Zika virus/patogenicidade , Adulto , História do Século XX , História do Século XXI , Humanos , Recém-Nascido , Zika virus/classificação , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/história
7.
Virol J ; 14(1): 31, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202068

RESUMO

BACKGROUND: Infection of glial cells by human neurotropic polyomavirus JC (JCV), the causative agent of the CNS demyelinating disease progressive multifocal leukoencephalopathy (PML), rapidly inflicts damage to cellular DNA. This activates DNA damage response (DDR) signaling including induction of expression of DNA repair factor Rad51. We previously reported that Rad51 co-operates with the transcription factor NF-κB p65 to activate JCV early transcription. Thus Rad51 induction by JCV infection may provide positive feedback for viral activation early in JCV infection. DDR is also known to stimulate NF-κB activity, a phenomenon known as nucleus to cytoplasm or "inside-out" NF-κB signaling, which is initiated by Ataxia telangiectasia mutated (ATM) protein, a serine/threonine kinase recruited and activated by DNA double-strand breaks. Downstream of ATM, there occurs a series of post-translational modifications of NF-κB essential modulator (NEMO), the γ regulatory subunit of inhibitor of NF-κB (IκB) kinase (IKK), resulting in NF-κB activation. METHODS: We analyzed the effects of downstream pathways in the DDR by phosphospecific Western blots and analysis of the subcellular distribution of NEMO by cell fractionation and immunocytochemistry. The role of DDR in JCV infection was analyzed using a small molecule inhibitor of ATM (KU-55933). NEMO sumoylation was investigated by Western and association of ATM and NEMO by immunoprecipitation/Western blots. RESULTS: We show that JCV infection caused phosphorylation and activation of ATM while KU-55933 inhibited JCV replication. JCV infection caused a redistribution of NEMO from cytoplasm to nucleus. Co-expression of JCV large T-antigen and FLAG-tagged NEMO showed the occurrence of sumoylation of NEMO, while co-expression of ATM and FLAG-NEMO demonstrated physical association between ATM and NEMO. CONCLUSIONS: We propose a model where JCV infection induces both overexpression of Rad51 protein and activation of the nucleus to cytoplasm NF-κB signaling pathway, which then act together to enhance JCV gene expression.


Assuntos
Dano ao DNA , Interações Hospedeiro-Patógeno , Vírus JC/crescimento & desenvolvimento , NF-kappa B/metabolismo , Neuroglia/virologia , Transdução de Sinais , Estresse Fisiológico , Western Blotting , Fracionamento Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação Viral da Expressão Gênica , Humanos , Quinase I-kappa B/análise , Imuno-Histoquímica , Vírus JC/genética , Modelos Biológicos , Transporte Proteico , Rad51 Recombinase/metabolismo , Transcrição Gênica
8.
Rev Med Virol ; 26(2): 102-14, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26663440

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a devastating and often fatal demyelinating disease of the central nervous system for which effective therapies are lacking. It is caused by the replication of polyomavirus JC (JCV) in the oligodendrocytes and astrocytes leading to their cytolytic death and loss of myelin from the subcortical white matter. While the virus is very common in human populations worldwide, the incidence of the disease is very low and confined almost exclusively to individuals with some form of immunological dysfunction. However, the number of people who constitute the at-risk population is growing larger and includes individuals with HIV-1/AIDS and patients receiving immunomodulatory therapies such as multiple sclerosis patients treated with natalizumab. Further adding to the public health significance of this disease are the difficulties encountered in the diagnosis of PML and the lack of useful biomarkers for PML progression. In this review, we examine the diagnostic assays that are available for different aspects of the JCV life cycle, their usefulness and drawbacks, and the prospects for improvements.


Assuntos
Anticorpos Antivirais/sangue , Biomarcadores/sangue , Hospedeiro Imunocomprometido/imunologia , Vírus JC/imunologia , Leucoencefalopatia Multifocal Progressiva/diagnóstico , RNA Viral/sangue , Carga Viral/métodos , Síndrome da Imunodeficiência Adquirida/imunologia , Astrócitos/virologia , Biomarcadores/análise , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Humanos , Leucoencefalopatia Multifocal Progressiva/virologia , Oligodendroglia/virologia
9.
J Cell Physiol ; 231(10): 2115-27, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26831433

RESUMO

Agnoprotein is an important regulatory protein of polyomaviruses, including JCV, BKV, and SV40. In the absence of its expression, these viruses are unable to sustain their productive life cycle. It is a highly basic phosphoprotein that localizes mostly to the perinuclear area of infected cells, although a small amount of the protein is also found in nucleus. Much has been learned about the structure and function of this important regulatory protein in recent years. It forms highly stable dimers/oligomers in vitro and in vivo through its Leu/Ile/Phe-rich domain. Structural NMR studies revealed that this domain adopts an alpha-helix conformation and plays a critical role in the stability of the protein. It associates with cellular proteins, including YB-1, p53, Ku70, FEZ1, HP1α, PP2A, AP-3, PCNA, and α-SNAP; and viral proteins, including small t antigen, large T antigen, HIV-1 Tat, and JCV VP1; and significantly contributes the viral transcription and replication. This review summarizes the recent advances in the structural and functional properties of this important regulatory protein. J. Cell. Physiol. 231: 2115-2127, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Infecções por Polyomavirus/virologia , Polyomavirus/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Homólogo 5 da Proteína Cromobox , Humanos , Vírus JC/isolamento & purificação , Vírus JC/metabolismo , Polyomavirus/isolamento & purificação
10.
J Cell Biochem ; 117(8): 1813-21, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26729625

RESUMO

Bag5 is a member of the BAG family of molecular chaperone regulators and is unusual in that it consists of five BAG domains, which function as modulators of chaperone activity. Bag family proteins play a key role in cellular as well as in cardiac function and their differential expression is reported in heart failure. In this study, we examined the importance of a Bag family member protein, Bag5, in cardiomyocytes during endoplasmic reticulum (ER) stress. We found that expression of Bag5 in cardiomyocytes is significantly increased with the induction of ER stress in a time dependent manner. We have taken gain-in and loss-of functional approaches to characterize Bag5 protein function in cardiomyocytes. Adenoviral mediated expression of Bag5 significantly decreased cell death as well as improved cellular viability in ER stress. Along with this, ER stress-induced CHOP protein expression is significantly decreased in cells that overexpress Bag5. Conversely, we found that siRNA-mediated knockdown of Bag5 caused cell death, increased cytotoxicity, and decreased cellular viability in cardiomyocytes. Mechanistically, we found that Bag5 protein expression is significantly increased in the ER during ER stress and that this in turn modulates GRP78 protein stability and reduces ER stress. This study suggests that Bag5 is an important regulator of ER function and so could be exploited as a tool to improve cardiomyocyte function under stress conditions. J. Cell. Biochem. 117: 1813-1821, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Choque Térmico/genética , Estabilidade Proteica , Ratos , Ratos Sprague-Dawley
11.
J Neurovirol ; 22(5): 615-625, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27007123

RESUMO

Brd4 is an epigenetic reader protein and a member of the BET (bromodomain and extra terminal domain) family of proteins with two bromodomains that recognize acetylated lysine residues. Brd4 specifically binds to acetylated transcription factor NF-κB p65 and coactivates transcription. Polyomavirus JC (JCV) is regulated by a noncoding control region (NCCR) containing promoter/enhancer elements for viral gene expression including a binding site for NF-κB, which responds to proinflammatory cytokines such as TNF-α, the DNA damage response, calcium signaling and acetylation of the NF-κB p65 subunit on lysine residues K218 and K221. Earlier studies indicated that NF-κB is involved in the reactivation of persistent/latent JCV in glial cells to cause progressive multifocal leukoencephalopathy (PML), a severe demyelinating disease of the brain caused by replication of JCV in glial cells. To investigate the mechanism of action of NF-κB acetylation on JCV transcription, we examined Brd4 and found that JCV early transcription was stimulated by Brd4 via the JCV NF-κB site and that p65 K218 and K221 were involved. Treatment with the Brd4 inhibitor JQ1(+) or mutation of either K218 or K221 to glutamine (K218R or K221) inhibited this stimulation and decreased the proportion of p65 in the nucleus. We conclude that Brd4 is involved in the regulation of the activation status of JCV in glial cells.


Assuntos
Interações Hospedeiro-Patógeno , Vírus JC/efeitos dos fármacos , Proteínas Nucleares/genética , Fator de Transcrição RelA/genética , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/genética , Replicação Viral/efeitos dos fármacos , Acetilação , Azepinas/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Epigênese Genética , Genes Reporter , Humanos , Vírus JC/genética , Vírus JC/crescimento & desenvolvimento , Luciferases/genética , Luciferases/metabolismo , Mutação , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Ligação Proteica , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Triazóis/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Ativação Viral
12.
Ann Neurol ; 77(4): 560-70, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25623836

RESUMO

Many neurological diseases of the central nervous system (CNS) are underpinned by malfunctions of the immune system, including disorders involving opportunistic infections. Progressive multifocal leukoencephalopathy (PML) is a lethal CNS demyelinating disease caused by the human neurotropic polyomavirus JC (JCV) and is found almost exclusively in individuals with immune disruption, including patients with human immunodeficiency virus/acquired immunodeficiency syndrome, patients receiving therapeutic immunomodulatory monoclonal antibodies to treat conditions such as multiple sclerosis, and transplant recipients. Thus, the public health significance of this disease is high, because of the number of individuals constituting the at-risk population. The incidence of PML is very low, whereas seroprevalence for the virus is high, suggesting infection by the virus is very common, and so it is thought that the virus is restrained but it persists in an asymptomatic state that can only occasionally be disrupted to lead to viral reactivation and PML. When JCV actively replicates in oligodendrocytes and astrocytes of the CNS, it produces cytolysis, leading to formation of demyelinated lesions with devastating consequences. Defining the molecular nature of persistence and events leading to reactivation of the virus to cause PML has proved to be elusive. In this review, we examine the current state of knowledge of the JCV life cycle and mechanisms of pathogenesis. We will discuss the normal course of the JCV life cycle including transmission, primary infection, viremia, and establishment of asymptomatic persistence as well as pathogenic events including migration of the virus to the brain, reactivation from persistence, viral infection, and replication in the glial cells of the CNS and escape from immunosurveillance.


Assuntos
Vírus JC/metabolismo , Leucoencefalopatia Multifocal Progressiva/sangue , Leucoencefalopatia Multifocal Progressiva/transmissão , Animais , Humanos , Vírus JC/imunologia , Leucoencefalopatia Multifocal Progressiva/diagnóstico , Estudos Soroepidemiológicos
13.
Clin Microbiol Rev ; 27(3): 463-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24982317

RESUMO

About a fifth of all human cancers worldwide are caused by infectious agents. In 12% of cancers, seven different viruses have been causally linked to human oncogenesis: Epstein-Barr virus, hepatitis B virus, human papillomavirus, human T-cell lymphotropic virus, hepatitis C virus, Kaposi's sarcoma herpesvirus, and Merkel cell polyomavirus. Here, we review the many molecular mechanisms of oncogenesis that have been discovered over the decades of study of these viruses. We discuss how viruses can act at different stages in the complex multistep process of carcinogenesis. Early events include their involvement in mutagenic events associated with tumor initiation such as viral integration and insertional mutagenesis as well as viral promotion of DNA damage. Also involved in tumor progression is the dysregulation of cellular processes by viral proteins, and we describe how this has been investigated by studies in cell culture and in experimental animals and by molecular cellular approaches. Also important are the molecular mechanisms whereby viruses interact with the immune system and the immune evasion strategies that have evolved.


Assuntos
Transformação Celular Viral , Neoplasias/etiologia , Vírus Oncogênicos/fisiologia , Infecções Tumorais por Vírus/complicações , Animais , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune , Neoplasias/virologia , Infecções Tumorais por Vírus/mortalidade
14.
J Cell Physiol ; 230(12): 2869-74, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26041694

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a severe demyelinating disease of the CNS caused by the human polyomavirus JC (JCV). JCV replication occurs only in human cells and investigation of PML has been severely hampered by the lack of an animal model. The common feature of PML is impairment of the immune system. The key to understanding PML is working out the complex mechanisms that underlie viral entry and replication within the CNS and the immunosurveillance that suppresses the virus or allows it to reactivate. Early models involved the simple inoculation of JCV into animals such as monkeys, hamsters, and mice. More recently, mouse models transgenic for the gene encoding the JCV early protein, T-antigen, a protein thought to be involved in the disruption of myelin seen in PML, have been employed. These animal models resulted in tumorigenesis rather than demyelination. Another approach is to use animal polyomaviruses that are closely related to JCV but able to replicate in the animal such as mouse polyomavirus and SV40. More recently, novel models have been developed that involve the engraftment of human cells into the animal. Here, we review progress that has been made to establish an animal model for PML, the advances and limitations of different models and weigh future prospects.


Assuntos
Encéfalo/virologia , Vírus JC/patogenicidade , Leucoencefalopatia Multifocal Progressiva/virologia , Animais , Animais Geneticamente Modificados , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Humanos , Vírus JC/genética , Leucoencefalopatia Multifocal Progressiva/genética , Leucoencefalopatia Multifocal Progressiva/imunologia , Leucoencefalopatia Multifocal Progressiva/patologia , Bainha de Mielina/metabolismo , Fenótipo , Especificidade da Espécie , Replicação Viral
15.
J Virol ; 88(12): 6556-75, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24672035

RESUMO

UNLABELLED: Agnoprotein is a small multifunctional regulatory protein required for sustaining the productive replication of JC virus (JCV). It is a mostly cytoplasmic protein localizing in the perinuclear area and forms highly stable dimers/oligomers through a Leu/Ile/Phe-rich domain. There have been no three-dimensional structural data available for agnoprotein due to difficulties associated with the dynamic conversion from monomers to oligomers. Here, we report the first nuclear magnetic resonance (NMR) structure of a synthetic agnoprotein peptide spanning amino acids Thr17 to Glu55 where Lys23 to Phe39 encompassing the Leu/Ile/Phe-rich domain forms an amphipathic α-helix. On the basis of these structural data, a number of Ala substitution mutations were made to investigate the role of the α-helix in the structure and function of agnoprotein. Single L29A and L36A mutations exhibited a significant negative effect on both protein stability and viral replication, whereas the L32A mutation did not. In addition, the L29A mutant displayed a highly nuclear localization pattern, in contrast to the pattern for the wild type (WT). Interestingly, a triple mutant, the L29A+L32A+L36A mutant, yielded no detectable agnoprotein expression, and the replication of this JCV mutant was significantly reduced, suggesting that Leu29 and Leu36 are located at the dimer interface, contributing to the structure and stability of agnoprotein. Two other single mutations, L33A and E34A, did not perturb agnoprotein stability as drastically as that observed with the L29A and L36A mutations, but they negatively affected viral replication, suggesting that the role of these residues is functional rather than structural. Thus, the agnoprotein dimerization domain can be targeted for the development of novel drugs active against JCV infection. IMPORTANCE: Agnoprotein is a small regulatory protein of JC virus (JCV) and is required for the successful completion of the viral replication cycle. It forms highly stable dimers and oligomers through its hydrophobic (Leu/Ile/Phe-rich) domain, which has been shown to play essential roles in the stability and function of the protein. In this work, the Leu/Ile/Phe-rich domain has been further characterized by NMR studies using an agnoprotein peptide spanning amino acids T17 to Q54. Those studies revealed that the dimerization domain of the protein forms an amphipathic α-helix. Subsequent NMR structure-based mutational analysis of the region highlighted the critical importance of certain amino acids within the α-helix for the stability and function of agnoprotein. In conclusion, this study provides a solid foundation for developing effective therapeutic approaches against the dimerization domain of the protein to inhibit its critical roles in JCV infection.


Assuntos
Vírus JC/metabolismo , Infecções por Polyomavirus/virologia , Proteínas Virais Reguladoras e Acessórias/química , Sequência de Aminoácidos , Linhagem Celular , Dimerização , Humanos , Vírus JC/química , Vírus JC/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral
16.
PLoS Pathog ; 9(3): e1003206, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23516356

RESUMO

Since their discovery in 1971, the polyomaviruses JC (JCPyV) and BK (BKPyV), isolated from patients with progressive multifocal leukoencephalopathy and polyomavirus-associated nephropathy, respectively, remained for decades as the only known members of the Polyomaviridae family of viruses of human origin. Over the past five years, the application of new genomic amplification technologies has facilitated the discovery of several novel human polyomaviruses (HPyVs), bringing the present number to 10. These HPyVs share many fundamental features in common such as genome size and organization. Infection by all HPyVs is widespread in the human population, but they show important differences in their tissue tropism and association with disease. Much remains unknown about these new viruses. In this review, we discuss the problems associated with studying HPyVs, such as the lack of culture systems for the new viruses and the gaps in our basic understanding of their biology. We summarize what is known so far about their distribution, life cycle, tissue tropism, their associated pathologies (if any), and future research directions in the field.


Assuntos
Infecções por Polyomavirus/virologia , Polyomavirus/fisiologia , Infecções Tumorais por Vírus/virologia , Animais , Modelos Animais de Doenças , Genômica , Humanos , Imunidade Celular , Leucoencefalopatia Multifocal Progressiva/epidemiologia , Leucoencefalopatia Multifocal Progressiva/imunologia , Leucoencefalopatia Multifocal Progressiva/patologia , Leucoencefalopatia Multifocal Progressiva/virologia , Especificidade de Órgãos , Polyomavirus/genética , Polyomavirus/imunologia , Polyomavirus/isolamento & purificação , Infecções por Polyomavirus/epidemiologia , Infecções por Polyomavirus/imunologia , Infecções por Polyomavirus/patologia , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/patologia , Latência Viral , Replicação Viral
17.
J Neurovirol ; 21(6): 679-87, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25791343

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease caused by neurotropic polyomavirus, JC virus (JCV), a virus that causes lytic infection of CNS glial cells. After primary infection, JCV is controlled by the immune system but virus persists asymptomatically. Rarely, when immune function is impaired, it can reemerge to cause PML. The mechanisms of JCV persistence and reactivation are not well understood but our earlier work implicated epigenetic control by protein acetylation since histone deacetylase inhibitors such as trichostatin A (TSA) strongly stimulate JCV transcription. Since both TNF-α and TSA activate JCV transcription via the same unique NF-κB site in the JCV control region, we investigated a role for acetylation of NF-κB in JCV regulation. A site-directed mutagenesis strategy was employed targeting the known lysine acetylation sites of NF-κB p65: K218, K221, and K310. We individually mutated each lysine to arginine, which cannot be acetylated and retains a positive charge like lysine. K218R and K221R impaired transactivation of JCV early promoter transcription either alone or combined with TSA treatment or coexpression of acetyltransferase transcriptional coactivator p300 but K310R was largely without effect. Mutation of lysine to glutamine gives mutants with a negative charge like acetyllysine. However, K218Q and K221Q showed impaired activity and only K310Q showed enhanced transactivation. NF-κB acetylation can regulate several aspects of the process of activation including complex formation with IκB, translocation to the nucleus, and DNA binding and transcriptional activation. Cell fractionation studies revealed that the mutants had no defect in translocation to the nucleus whereas gel shift studies revealed reduced binding to the JCV NF-κB site. Thus, acetylation regulates NF-κB p65 activity toward JCV at the level of p65 binding to the JCV control region and activation of JCV transcription.


Assuntos
Epigênese Genética/genética , Vírus JC/genética , Fator de Transcrição RelA/metabolismo , Ativação Transcricional/genética , Ativação Viral/genética , Acetilação , Western Blotting , Linhagem Celular Tumoral , Humanos , Lisina/metabolismo , Mutagênese Sítio-Dirigida , Oligodendroglia/virologia , Transfecção
18.
J Cell Physiol ; 229(8): 1039-46, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24648009

RESUMO

The insulin-like growth factor-1 (IGF-1) signaling pathway plays an important role in neuronal cell differentiation. Recent studies have shown that IGF-1 has the capacity to counteract the retraction of neuronal processes in response to inflammatory cytokines such as TNF-α, which is a known factor for neuronal injury in the central nervous system. This event is thought to be mediated via interference of TNF-α-induced interaction of ß1-integrin with insulin receptor substrate-1 (IRS-1). Here, we demonstrate the interaction of IRS-1 with disintegrin and metalloproteinase ADAM10 through the N-terminal domain of IRS-1 and that this is involved in the regulation of neurite extension and retraction by IGF-1 and TNF-α, respectively. PC12 cells expressing the N-terminal domain show enhanced neurite extension after IGF-1 treatment and reduced neurite depletion relative to control cells after TNF-α treatment. The level of ADAM10 was found to be increased in immunohistochemical studies of HIV encephalitis clinical samples and is present with TNF-α and TNFR1 in both astrocytes and neurons. Altogether, these observations suggest a role for ADAM10 in the mechanism for IGF1/IRS-1 signaling pathway in sustaining the stability of neuronal processes.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Proteínas ADAM/genética , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/genética , Animais , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Integrina beta1/genética , Integrina beta1/metabolismo , Proteínas de Membrana/genética , Camundongos , Ratos , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
19.
J Neurosci Res ; 91(1): 116-27, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23086711

RESUMO

Reactivation of the human polyomavirus JC (JCV) in the CNS results in a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). The lytic destruction of oligodendrocytes, which occurs at the terminal stage of the viral infection cycle, is considered a critical factor in the development of demyelination and the pathogenesis of PML. However, knowledge is limited about interaction of JCV with oligodendrocytes and its impact on the denudation of axons at the early stage of viral reactivation and prior to the destruction of the infected cells. We have developed an in vitro neuroprogenitor cell culture using human fetal brain that can be differentiated to the oligodendrocyte lineage to investigate interactions of JCV with its host cells. Results show that infection with JCV delays oligodendrocyte maturation as shown by reduced levels of oligodendrocytic markers, including myelin basic protein, proteolipid protein, and platelet-derived growth factor receptor-α. Furthermore, replication of JCV in these cells caused substantial dysregulation of several chemokines, including CCL5/RANTES, GRO, CXCL1/GROα, CXCL16, CXCL8/IL-8, CXCL5/ENA-78, and CXCL10/IP-10, all of which play a role in cell growth and differentiation.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Neurais/virologia , Oligodendroglia/virologia , Infecções por Polyomavirus/metabolismo , Células Cultivadas , Quimiocinas/metabolismo , Humanos , Immunoblotting , Imuno-Histoquímica , Leucoencefalopatia Multifocal Progressiva/metabolismo , Leucoencefalopatia Multifocal Progressiva/virologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções Tumorais por Vírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA