Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 61(2): 143-158, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31818877

RESUMO

Phospholipases A2 (PLA2s) catalyze hydrolysis of the sn-2 substituent from glycerophospholipids to yield a free fatty acid (i.e., arachidonic acid), which can be metabolized to pro- or anti-inflammatory eicosanoids. Macrophages modulate inflammatory responses and are affected by Ca2+-independent phospholipase A2 (PLA2)ß (iPLA2ß). Here, we assessed the link between iPLA2ß-derived lipids (iDLs) and macrophage polarization. Macrophages from WT and KO (iPLA2ß-/-) mice were classically M1 pro-inflammatory phenotype activated or alternatively M2 anti-inflammatory phenotype activated, and eicosanoid production was determined by ultra-performance LC ESI-MS/MS. As a genotypic control, we performed similar analyses on macrophages from RIP.iPLA2ß.Tg mice with selective iPLA2ß overexpression in ß-cells. Compared with WT, generation of select pro-inflammatory prostaglandins (PGs) was lower in iPLA2ß-/- , and that of a specialized pro-resolving lipid mediator (SPM), resolvin D2, was higher; both changes are consistent with the M2 phenotype. Conversely, macrophages from RIP.iPLA2ß.Tg mice exhibited an opposite landscape, one associated with the M1 phenotype: namely, increased production of pro-inflammatory eicosanoids (6-keto PGF1α, PGE2, leukotriene B4) and decreased ability to generate resolvin D2. These changes were not linked with secretory PLA2 or cytosolic PLA2α or with leakage of the transgene. Thus, we report previously unidentified links between select iPLA2ß-derived eicosanoids, an SPM, and macrophage polarization. Importantly, our findings reveal for the first time that ß-cell iPLA2ß-derived signaling can predispose macrophage responses. These findings suggest that iDLs play critical roles in macrophage polarization, and we posit that they could be targeted therapeutically to counter inflammation-based disorders.


Assuntos
Cálcio/metabolismo , Eicosanoides/metabolismo , Fosfolipases A2 do Grupo IV/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Animais , Fosfolipases A2 do Grupo IV/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
2.
Biomolecules ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920898

RESUMO

The Ca2+-independent phospholipase A2ß (iPLA2ß) is a member of the PLA2 family that has been proposed to have roles in multiple biological processes including membrane remodeling, cell proliferation, bone formation, male fertility, cell death, and signaling. Such involvement has led to the identification of iPLA2ß activation in several diseases such as cancer, cardiovascular abnormalities, glaucoma, periodontitis, neurological disorders, diabetes, and other metabolic disorders. More recently, there has been heightened interest in the role that iPLA2ß plays in promoting inflammation. Recognizing the potential contribution of iPLA2ß in the development of autoimmune diseases, we review this issue in the context of an iPLA2ß link with macrophages and T-cells.


Assuntos
Fosfolipases A2 do Grupo VI/metabolismo , Imunidade Inata , Animais , Humanos , Inflamação , Linfócitos/imunologia , Macrófagos/imunologia
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(6): 846-860, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30408523

RESUMO

The Ca2+-independent phospholipases, designated as group VI iPLA2s, also referred to as PNPLAs due to their shared homology with patatin, include the ß, γ, δ, ε, ζ, and η forms of the enzyme. The iPLA2s are ubiquitously expressed, share a consensus GXSXG catalytic motif, and exhibit organelle/cell-specific localization. Among the iPLA2s, iPLA2ß has received wide attention as it is recognized to be involved in membrane remodeling, cell proliferation, cell death, and signal transduction. Ongoing studies implicate participation of iPLA2ß in a variety of disease processes including cancer, cardiovascular abnormalities, glaucoma, and peridonditis. This review will focus on iPLA2ß and its links to male fertility, neurological disorders, metabolic disorders, and inflammation.


Assuntos
Fertilidade/fisiologia , Inflamação/metabolismo , Doenças Metabólicas/metabolismo , Doenças do Sistema Nervoso/metabolismo , Animais , Humanos , Masculino , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA