Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2016: 5803893, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26819585

RESUMO

The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.


Assuntos
Algoritmos , Inteligência Artificial , Simulação por Computador , Modelos Biológicos , Animais , Migração Humana , Humanos
2.
Comput Intell Neurosci ; 2014: 419743, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25587265

RESUMO

Condition diagnosis of multiple bearings system is one of the requirements in industry field, because bearings are used in many equipment and their failure can result in total breakdown. Conditions of bearings commonly are reflected by vibration signals data. In multiple bearing condition diagnosis, it will involve many types of vibration signals data; thus, consequently, it will involve many features extraction to obtain precise condition diagnosis. However, large number of features extraction will increase the complexity of the diagnosis system. Therefore, in this paper, we presented a diagnosis method which is hybridization of adaptive genetic algorithms (AGAs), back propagation neural networks (BPNNs), and grey relational analysis (GRA) to diagnose the condition of multiple bearings system. AGAs are used in the diagnosis algorithm to determine the best initial weights of BPNNs in order to improve the diagnosis accuracy. In addition, GRA is applied to determine and select the dominant features from the vibration signal data which will provide good diagnosis of multiple bearings system in less features extraction. The experiments results show that AGAs-BPNNs with GRA approaches can increase the accuracy of diagnosis in shorter processing time, compared with the AGAs-BPNNs without the GRA.


Assuntos
Algoritmos , Análise de Falha de Equipamento/métodos , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador/instrumentação , Humanos , Vibração
3.
PLoS One ; 9(12): e114135, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25502170

RESUMO

Poor eating behavior has been identified as one of the core contributory factors of the childhood obesity epidemic. The consequences of obesity on numerous aspects of life are thoroughly explored in the existing literature. For instance, evidence shows that obesity is linked to incidences of diseases such as heart disease, type-2 diabetes, and some cancers, as well as psychosocial problems. To respond to the increasing trends in the UK, in 2008 the government set a target to reverse the prevalence of obesity (POB) back to 2000 levels by 2020. This paper will outline the application of system dynamics (SD) optimization to simulate the effect of changes in the eating behavior of British children (aged 2 to 15 years) on weight and obesity. This study also will identify how long it will take to achieve the government's target. This paper proposed a simulation model called Intervention Childhood Obesity Dynamics (ICOD) by focusing the interrelations between various strands of knowledge in one complex human weight regulation system. The model offers distinct insights into the dynamics by capturing the complex interdependencies from the causal loop and feedback structure, with the intention to better understand how eating behaviors influence children's weight, body mass index (BMI), and POB measurement. This study proposed a set of equations that are revised from the original (baseline) equations. The new functions are constructed using a RAMP function of linear decrement in portion size and number of meal variables from 2013 until 2020 in order to achieve the 2020 desired target. Findings from the optimization analysis revealed that the 2020 target won't be achieved until 2026 at the earliest, six years late. Thus, the model suggested that a longer period may be needed to significantly reduce obesity in this population.


Assuntos
Comportamento Alimentar , Obesidade/epidemiologia , Obesidade/prevenção & controle , Adolescente , Índice de Massa Corporal , Peso Corporal , Criança , Pré-Escolar , Simulação por Computador , Humanos , Modelos Biológicos , Obesidade/patologia , Reino Unido/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA