Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 117(14): 3737-47, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21289307

RESUMO

Thpo/Mpl signaling plays an important role in the maintenance of hematopoietic stem cells (HSCs) in addition to its role in megakaryopoiesis. Patients with inactivating mutations in Mpl develop thrombocytopenia and aplastic anemia because of progressive loss of HSCs. Yet, it is unknown whether this loss of HSCs is an irreversible process. In this study, we used the Mpl knockout (Mpl(-/-)) mouse model and expressed Mpl from newly developed lentiviral vectors specifically in the physiologic Mpl target populations, namely, HSCs and megakaryocytes. After validating lineage-specific expression in vivo using lentiviral eGFP reporter vectors, we performed bone marrow transplantation of transduced Mpl(-/-) bone marrow cells into Mpl(-/-) mice. We show that restoration of Mpl expression from transcriptionally targeted vectors prevents lethal adverse reactions of ectopic Mpl expression, replenishes the HSC pool, restores stem cell properties, and corrects platelet production. In some mice, megakaryocyte counts were atypically high, accompanied by bone neo-formation and marrow fibrosis. Gene-corrected Mpl(-/-) cells had increased long-term repopulating potential, with a marked increase in lineage(-)Sca1(+)cKit(+) cells and early progenitor populations in reconstituted mice. Transcriptome analysis of lineage(-)Sca1(+)cKit(+) cells in Mpl-corrected mice showed functional adjustment of genes involved in HSC self-renewal.


Assuntos
Anemia Aplástica/genética , Anemia Aplástica/terapia , Técnicas de Transferência de Genes , Células-Tronco Hematopoéticas/fisiologia , Lentivirus/genética , Receptores de Trombopoetina/genética , Regeneração/genética , Anemia Aplástica/patologia , Anemia Aplástica/fisiopatologia , Animais , Linhagem da Célula/genética , Células Cultivadas , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Receptores de Trombopoetina/metabolismo , Receptores de Trombopoetina/fisiologia
2.
Mol Ther ; 18(2): 343-52, 2010 02.
Artigo em Inglês | MEDLINE | ID: mdl-19844195

RESUMO

Signaling of the thrombopoietin (THPO) receptor MPL is critical for the maintenance of hematopoietic stem cells (HSCs) and megakaryocytic differentiation. Inherited loss-of-function mutations of MPL cause severe thrombocytopenia and aplastic anemia, a syndrome called congenital amegakaryocytic thrombocytopenia (CAMT). With the aim to assess the toxicity of retroviral expression of Mpl as a basis for further development of a gene therapy for this disorder, we expressed Mpl in a murine bone marrow transplantation (BMT) model. Treated mice developed a profound yet transient elevation of multilineage hematopoiesis, which showed morphologic features of a chronic myeloproliferative disorder (CMPD) with progressive pancytopenia. Ten percent of mice (3/27) developed erythroleukemia, associated with insertional activation of Sfpi1 and Fli1. The majority of transplanted mice developed a progressive pancytopenia with histopathological features of a myelodysplastic syndrome (MDS)-like disorder. To avoid these adverse reactions, improved retroviral vectors were designed that mediate reduced and more physiological Mpl expression. Self-inactivating gamma-retroviral vectors were constructed that expressed Mpl from the phosphoglycerate kinase (PGK) or the murine Mpl promoter. Mice that received BM cells expressing Mpl from the Mpl promoter were free of any previously observed adverse reactions.


Assuntos
Terapia Genética/efeitos adversos , Terapia Genética/métodos , Leucemia/etiologia , Pancitopenia/etiologia , Receptores de Trombopoetina/metabolismo , Retroviridae/fisiologia , Animais , Southern Blotting , Western Blotting , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Receptores de Trombopoetina/genética , Retroviridae/genética
3.
Hum Gene Ther Methods ; 23(1): 38-55, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22428979

RESUMO

SmartDCs (Self-differentiated Myeloid-derived Antigen-presenting-cells Reactive against Tumors) consist of highly viable dendritic cells (DCs) induced to differentiate with lentiviral vectors (LVs) after an overnight ex vivo transduction. Tricistronic vectors co-expressing cytokines (granulocyte-macrophage-colony stimulating factor [GM-CSF], interleukin [IL]-4) and a melanoma antigen (tyrosine related protein 2 [TRP2]) were used to transduce mouse bone marrow cells or human monocytes. Sixteen hours after transduction, the cells were dispensed in aliquots and cryopreserved for identity, potency, and safety analyses. Thawed SmartDCs readily differentiated into highly viable cells with a DC immunophenotype. Prime/boost subcutaneous administration of 1×10(6) thawed murine SmartDCs into C57BL/6 mice resulted into TRP2-specific CD8(+) T-cell responses and protection against lethal melanoma challenge. Human SmartDC-TRP2 generated with monocytes obtained from melanoma patients secreted endogenous cytokines associated with DC activation and stimulated TRP2-specific autologous T-cell expansion in vitro. Thawed human SmartDCs injected subcutaneously in NOD.Rag1(-/-).IL2rγ(-/-) mice maintained DC characteristics and viability for 1 month in vivo and did not cause any signs of pathology. For development of good manufacturing practices, CD14(+) monocytes selected by magnetic-activated cell separation were transduced in a closed bag system (multiplicity of infection of 5), washed, and cryopreserved. Fifty percent of the monocytes used for transduction were recovered for cryopreservation. Thawed SmartDCs produced in two independent runs expressed the endogenous cytokines GM-CSF and IL-4, and the resulting homogeneous SmartDCs that self-differentiated in vitro contained approximately 1.5-3.0 copies of integrated LVs per cell. Thus, this method facilitates logistics, standardization, and high recovery for the generation of viable genetically reprogrammed DCs for clinical applications.


Assuntos
Biotecnologia/métodos , Células Dendríticas/imunologia , Vetores Genéticos/imunologia , Imunoterapia/métodos , Lentivirus/genética , Melanoma/terapia , Animais , Western Blotting , Linhagem Celular , Criopreservação , Citocinas/metabolismo , Primers do DNA/genética , Células Dendríticas/virologia , Citometria de Fluxo , Fluoresceínas , Genes RAG-1/genética , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Melanoma/imunologia , Proteínas de Membrana , Camundongos , Camundongos Knockout , Fragmentos de Peptídeos , Succinimidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA