Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Microdevices ; 23(2): 28, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33909118

RESUMO

Microfluidic, flow cytometry, and immunomagnetic methods for cancer cell isolation have heavily relied on the Epithelial Cellular Adhesion Molecule (EpCAM) for affinity separation. While EpCAM has been used extensively for circulating tumor cell isolation, it cannot be used to isolate non-epithelial cells. The human transferrin receptor (CD71) can also be used for cancer cell isolation and has the advantage that as an affinity target it can separate virtually any cancer cell type, regardless of disease origin. However, direct comparison of the capture ability of EpCAM and CD71 has not been reported previously. In this work, cell capture with both EpCAM and CD71 were studied using a novel higher-throughput herringbone cell separation microfluidic device. Five separation chip models were designed and the one with the highest capture efficiency (average 90 ± 10%) was chosen to compare antigen targets for cell capture. Multiple cancer cell lines including CCRF-CEM, PC-3 and MDA-MB-231 were tested for cell capture performance using both ligands (anti-CD71 and anti-EpCAM) in the optimized chip design. PC-3 and MDA-MB-231 cells were spiked into blood at concentrations ranging from 0.5%-10%. PC-3 cells were separated by anti-CD71 and anti-EpCAM with 32-37% and 31-50% capture purity respectively, while MDA-MB-231 were separated with 35-53% and 33-56% capture purity using anti-CD71 and anti-EpCAM for all concentrations. The enrichment factor for the lowest concentrations of cells in blood ranged from 66-74X. The resulting enrichment of cancer cells shows that anti-CD71 was found to be statistically similar to anti-EpCAM for epithelial cancer cells, while anti-CD71 can be further used for non-epithelial cells, where anti-EpCAM cannot be used.


Assuntos
Técnicas Analíticas Microfluídicas , Neoplasias , Antígenos CD , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Microfluídica , Receptores da Transferrina , Transferrinas
2.
Int J Pharm X ; 7: 100254, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38774112

RESUMO

Zileuton is a leukotriene inhibitor used to treat asthma. As a BCS class II drug it exhibits challenges with solubility which likely impact its absorption. As patient gender significantly impacts the pharmacokinetics of many drugs, this study aimed to investigate potential gender-based pharmacokinetic differences after oral zileuton administration in rats. Male and female Sprague Dawley rats received single oral gavage doses of pure zileuton as an active pharmaceutical ingredient (30 mg/kg body weight (bw)), physical mixture (PM; at 30 mg/kg bw of the formulation contains zileuton, kollidon VA64 fine, dowfax2A1 and trehalose), and nanocrystalline formulation of zileuton (NfZ; at 30 mg/kg bw of the formulation). Plasma, tissue, and urine concentrations were quantified using high performance liquid chromatography (HPLC). Noncompartmental pharmacokinetic analysis showed higher zileuton levels in the plasma of female versus male rats across all evaluated forms of zileuton (API, PM, and NfZ). Female rats demonstrated higher peak plasma concentrations (Cmax) and increased area under the plasma concentration-time curve (AUC) relative to males, regardless of formulation. These findings reveal substantial gender disparities in the pharmacokinetics of zileuton in the rat model. This study emphasizes the critical need to evaluate gender differences during preclinical drug development to enable gender-based precision dosing strategies for equivalent efficacy/safety outcomes in male and female patients. Additional studies are warranted to investigate underlying mechanisms of such pharmacokinetic gender divergences.

3.
RSC Adv ; 10(54): 32628-32637, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35516489

RESUMO

The use of blood as a liquid biopsy provides a minimally invasive and less traumatic approach for initial cancer screens as well as patient monitoring. However, current clinical protocols require a priori knowledge of cancer type for liquid biopsy analyses. Previously, we proposed the use of the human transferrin 1 receptor protein (CD71) as a universal capture target for cancer cells analyses. In this study we have attempted to identify the lowest limit of detection for circulating tumor cells of prostate (PC-3) and breast cancers (MDA-MB-231) using CD71. We used a novel high-throughput herringbone chip design which could extract PC-3 cells at 34 ± 5% purity and MDA-MB-231 cells at 43 ± 35% purity when spiked to lysed blood at 0.1%. MDA-MB-231 cell spiked samples showed higher standard deviation, but the system captured 55 ± 16 cells, which is a sufficient number of cells for subsequent analyses. Further, this herringbone chip design has been shown to be compatible with an erythrocyte lysis chip we have described in previous studies. This circuit was capable of capturing 510 ± 120 cells with a purity of 82 ± 14% using <7 µL of a whole blood sample spiked with 10% MDA-MB-231 cells. Using an erythrocyte lysis circuit eliminates the need for human intervention for target cell enrichment, thereby reducing cell loss and sample contamination. We have shown that, when used with the high-throughput herringbone chip CD71 has the capacity to sensitively detect rare target cells for routine low-cost cancer screens.

4.
Talanta ; 204: 731-738, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31357358

RESUMO

Blood is a routinely tested biological fluid for diagnosis and monitoring of diseases as many diseases would trigger a change in white blood cell count. Thus, several methods have been established to isolate or enrich white blood cells from patient blood samples for such analyses. One method of preparing an enriched white blood cell sample is through the selective lysis of red blood cells by hypotonic shock and restoration of osmolarity to maintain viability of target white blood cells. An inherent problem with this approach is the loss of target cells during sample handling. We report a two-stage separation system that can perform lysis and restoration of osmolarity of blood on-chip and direct the resultant sample to the second step of the analysis. Hence, there is no loss of sample. The post-lysis makeup features a protein-rich buffer to help stabilize cells. As proof of concept, we spiked HL-60 cells into a whole blood and a pre-lysed blood sample and compared capture metrics of each method using a downstream affinity separation. The capture efficiency of the whole blood sample ranged between 40 and 80% using <7 µL of sample compared to 10-52% from 60 µL of pre-lysed blood required for similar analysis. In addition, both pre-lysed and whole blood samples showed no significant difference in purity and viability. This two-stage separation system has demonstrated the capacity to replace centrifugation and wash steps required for the preparation of lysed blood, for white blood cell analyses.


Assuntos
Separação Celular/métodos , Dispositivos Lab-On-A-Chip , Leucócitos/citologia , Separação Celular/instrumentação , Eritrócitos/metabolismo , Células HL-60 , Hemólise , Humanos , Concentração Osmolar , Estudo de Prova de Conceito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA