Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Euro Surveill ; 26(18)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33960291

RESUMO

We describe four SARS-CoV-2 re-infections with a B.1.351 variant in 2021, in healthcare workers (HCWs) previously infected in 2020, before detection of this variant in Europe. Cases live in France, near the border with Luxembourg, where variants B.1.351 and B.1.1.7 circulated. All work in the same hospital unit where a cluster of COVID 19 with B1.351 variant occurred, affecting patients and HCWs. Before the cluster onset, HCWs used surgical masks, as per recommendations. After cluster onset, HCWs used FFP2 masks.


Assuntos
COVID-19 , SARS-CoV-2 , Europa (Continente) , França , Pessoal de Saúde , Humanos , Luxemburgo , Reinfecção
2.
Euro Surveill ; 26(16)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33890566

RESUMO

We compared 19,207 cases of SARS-CoV-2 variant B.1.1.7/S gene target failure (SGTF), 436 B.1.351 and 352 P.1 to non-variant cases reported by seven European countries. COVID-19 cases with these variants had significantly higher adjusted odds ratios for hospitalisation (B.1.1.7/SGTF: 1.7, 95% confidence interval (CI): 1.0-2.9; B.1.351: 3.6, 95% CI: 2.1-6.2; P.1: 2.6, 95% CI: 1.4-4.8) and B.1.1.7/SGTF and P.1 cases also for intensive care admission (B.1.1.7/SGTF: 2.3, 95% CI: 1.4-3.5; P.1: 2.2, 95% CI: 1.7-2.8).


Assuntos
COVID-19 , SARS-CoV-2 , Cuidados Críticos , Europa (Continente)/epidemiologia , Humanos
3.
Mol Cancer ; 17(1): 145, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30290811

RESUMO

BACKGROUND: Drug resistance remains an unsolved clinical issue in oncology. Despite promising initial responses obtained with BRAF and MEK kinase inhibitors, resistance to treatment develops within months in virtually all melanoma patients. METHODS: Microarray analyses were performed in BRAF inhibitor-sensitive and resistant cell lines to identify changes in the transcriptome that might play a role in resistance. siRNA approaches and kinase inhibitors were used to assess the involvement of the identified Anaplastic Lymphoma Kinase (ALK) in drug resistance. The capability of extracellular vesicles (EVs) to transfer drug resistant properties was investigated in co-culture assays. RESULTS: Here, we report a new mechanism of acquired drug resistance involving the activation of a novel truncated form of ALK. Knock down or inhibition of ALK re-sensitised resistant cells to BRAF inhibition and induced apoptosis. Interestingly, truncated ALK was also secreted into EVs and we show that EVs were the vehicle for transferring drug resistance. CONCLUSIONS: To our knowledge, this is the first report demonstrating the functional involvement of EVs in melanoma drug resistance by transporting a truncated but functional form of ALK, able to activate the MAPK signalling pathway in target cells. Combined inhibition of ALK and BRAF dramatically reduced tumour growth in vivo. These findings make ALK a promising clinical target in melanoma patients.


Assuntos
Quinase do Linfoma Anaplásico/metabolismo , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares/metabolismo , Melanoma/metabolismo , Quinase do Linfoma Anaplásico/genética , Animais , Transporte Biológico , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Isoenzimas , Camundongos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nucleic Acids Res ; 44(4): 1760-75, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26826707

RESUMO

Transcription factor binding specificity is crucial for proper target gene regulation. Motif discovery algorithms identify the main features of the binding patterns, but the accuracy on the lower affinity sites is often poor. Nuclear factor E2-related factor 2 (NRF2) is a ubiquitous redox-activated transcription factor having a key protective role against endogenous and exogenous oxidant and electrophile stress. Herein, we decipher the effects of sequence variation on the DNA binding sequence of NRF2, in order to identify both genome-wide binding sites for NRF2 and disease-associated regulatory SNPs (rSNPs) with drastic effects on NRF2 binding. Interactions between NRF2 and DNA were studied using molecular modelling, and NRF2 chromatin immunoprecipitation-sequence datasets together with protein binding microarray measurements were utilized to study binding sequence variation in detail. The binding model thus generated was used to identify genome-wide binding sites for NRF2, and genomic binding sites with rSNPs that have strong effects on NRF2 binding and reside on active regulatory elements in human cells. As a proof of concept, miR-126-3p and -5p were identified as NRF2 target microRNAs, and a rSNP (rs113067944) residing on NRF2 target gene (Ferritin, light polypeptide, FTL) promoter was experimentally verified to decrease NRF2 binding and result in decreased transcriptional activity.


Assuntos
Genoma Humano , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Transcrição Gênica , Algoritmos , Sítios de Ligação , Regulação da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas , Ligação Proteica
5.
Nat Methods ; 10(6): 577-83, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23603899

RESUMO

The distinct cell types of multicellular organisms arise owing to constraints imposed by gene regulatory networks on the collective change of gene expression across the genome, creating self-stabilizing expression states, or attractors. We curated human expression data comprising 166 cell types and 2,602 transcription-regulating genes and developed a data-driven method for identifying putative determinants of cell fate built around the concept of expression reversal of gene pairs, such as those participating in toggle-switch circuits. This approach allows us to organize the cell types into their ontogenic lineage relationships. Our method identifies genes in regulatory circuits that control neuronal fate, pluripotency and blood cell differentiation, and it may be useful for prioritizing candidate factors for direct conversion of cell fate.


Assuntos
Linhagem da Célula , Redes Reguladoras de Genes , Transcriptoma , Diferenciação Celular , Humanos
6.
Nucleic Acids Res ; 40(10): 4446-60, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22319216

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is a key transcription factor in mammalian adipogenesis. Genome-wide approaches have identified thousands of PPARγ binding sites in mouse adipocytes and PPARγ upregulates hundreds of protein-coding genes during adipogenesis. However, no microRNA (miRNA) genes have been identified as primary PPARγ-targets. By integration of four separate datasets of genome-wide PPARγ binding sites in 3T3-L1 adipocytes we identified 98 miRNA clusters with PPARγ binding within 50 kb from miRNA transcription start sites. Nineteen mature miRNAs were upregulated ≥2-fold during adipogenesis and for six of these miRNA loci the PPARγ binding sites were confirmed by at least three datasets. The upregulation of five miRNA genes miR-103-1 (host gene Pank3), miR-148b (Copz1), miR-182/96/183, miR-205 and miR-378 (Ppargc1b) followed that of Pparg. The PPARγ-dependence of four of these miRNA loci was demonstrated by PPARγ knock-down and the loci of miR-103-1 (Pank3), miR-205 and miR-378 (Ppargc1b) were also responsive to the PPARγ ligand rosiglitazone. Finally, chromatin immunoprecipitation analysis validated in silico predicted PPARγ binding sites at all three loci and H3K27 acetylation was analyzed to confirm the activity of these enhancers. In conclusion, we identified 22 putative PPARγ target miRNA genes, showed the PPARγ dependence of four of these genes and demonstrated three as direct PPARγ target genes in mouse adipogenesis.


Assuntos
Adipogenia/genética , Regulação da Expressão Gênica , MicroRNAs/genética , PPAR gama/metabolismo , Transcrição Gênica , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Camundongos , MicroRNAs/metabolismo , PPAR gama/análise , Elementos de Resposta , Rosiglitazona , Tiazolidinedionas/farmacologia
7.
Geriatrics (Basel) ; 8(1)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36826361

RESUMO

In spring 2021, a long-term care facility (LTCF) of 154 residents in Luxembourg experienced a large severe, acute respiratory-syndrome coronavirus 2 (SARS-CoV-2) outbreak a few days after a vaccination campaign. We conducted an outbreak investigation and a serosurvey two months after the outbreak, compared attack rates (AR) among residents and staff, and calculated hospitalization and case-fatality rates (CFR). Whole genome sequencing (WGS) was performed to detect variants in available samples and results were compared to genomes published on GISAID. Eighty-four (55%) residents and forty-five (26%) staff members tested positive for SARS-CoV-2; eighteen (21%) residents and one (2.2%) staff member were hospitalized, and twenty-three (CFR: 27%) residents died. Twenty-seven (21% of cases) experienced a reinfection. Sequencing identified seventy-seven cases (97% of sequenced cases) with B.1.1.420 and two cases among staff with B.1.351. The outbreak strain B.1.1.420 formed a separate cluster from cases from other European countries. Convalescent and vaccinated residents had higher anti-SARS-CoV-2 IgG antibody concentrations than vaccinated residents without infection (98% vs. 52%, respectively, with >120 RU/mL, p < 0.001). We documented an extensive outbreak of SARS-CoV-2 in an LTCF due to the presence of a specific variant leading to high CFR. Infection in vaccinated residents increased antibody responses. A single vaccine dose was insufficient to mitigate the outbreak.

8.
BMC Genomics ; 13: 50, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22292898

RESUMO

BACKGROUND: The liver X receptors (LXRs) are oxysterol sensing nuclear receptors with multiple effects on metabolism and immune cells. However, the complete genome-wide cistrome of LXR in cells of human origin has not yet been provided. RESULTS: We performed ChIP-seq in phorbol myristate acetate-differentiated THP-1 cells (macrophage-type) after stimulation with the potent synthetic LXR ligand T0901317 (T09). Microarray gene expression analysis was performed in the same cellular model. We identified 1357 genome-wide LXR locations (FDR < 1%), of which 526 were observed after T09 treatment. De novo analysis of LXR binding sequences identified a DR4-type element as the major motif. On mRNA level T09 up-regulated 1258 genes and repressed 455 genes. Our results show that LXR actions are focused on 112 genomic regions that contain up to 11 T09 target genes per region under the control of highly stringent LXR binding sites with individual constellations for each region. We could confirm that LXR controls lipid metabolism and transport and observed a strong association with apoptosis-related functions. CONCLUSIONS: This first report on genome-wide binding of LXR in a human cell line provides new insights into the transcriptional network of LXR and its target genes with their link to physiological processes, such as apoptosis.The gene expression microarray and sequence data have been submitted collectively to the NCBI Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo under accession number GSE28319.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Macrófagos/metabolismo , Receptores Nucleares Órfãos/metabolismo , Apoptose , Sítios de Ligação , Linhagem Celular , Regulação para Baixo , Humanos , Metabolismo dos Lipídeos , Receptores X do Fígado , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Nucleares Órfãos/antagonistas & inibidores , Ligação Proteica , Regulação para Cima
9.
Cell Commun Signal ; 10(1): 41, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23245396

RESUMO

BACKGROUND: The type-II-cytokine IFN-γ is a pivotal player in innate immune responses but also assumes functions in controlling tumor cell growth by orchestrating cellular responses against neoplastic cells. The role of IFN-γ in melanoma is not fully understood: it is a well-known growth inhibitor of melanoma cells in vitro. On the other hand, IFN-γ may also facilitate melanoma progression. While interferon-regulated genes encoding proteins have been intensively studied since decades, the contribution of miRNAs to effects mediated by interferons is an emerging area of research.We recently described a distinct and dynamic regulation of a whole panel of microRNAs (miRNAs) after IFN-γ-stimulation. The aim of this study was to analyze the transcriptional regulation of miR-29 family members in detail, identify potential interesting target genes and thus further elucidate a potential signaling pathway IFN-γ → Jak→ P-STAT1 → miR-29 → miR-29 target genes and its implication for melanoma growth. RESULTS: Here we show that IFN-γ induces STAT1-dependently a profound up-regulation of the miR-29 primary cluster pri-29a~b-1 in melanoma cell lines. Furthermore, expression levels of pri-29a~b-1 and mature miR-29a and miR-29b were elevated while the pri-29b-2~c cluster was almost undetectable. We observed an inverse correlation between miR-29a/b expression and the proliferation rate of various melanoma cell lines. This finding could be corroborated in cells transfected with either miR-29 mimics or inhibitors. The IFN-γ-induced G1-arrest of melanoma cells involves down-regulation of CDK6, which we proved to be a direct target of miR-29 in these cells. Compared to nevi and normal skin, and metastatic melanoma samples, miR-29a and miR-29b levels were found strikingly elevated in certain patient samples derived from primary melanoma. CONCLUSIONS: Our findings reveal that the miR-29a/b1 cluster is to be included in the group of IFN- and STAT-regulated genes. The up-regulated miR-29 family members may act as effectors of cytokine signalling in melanoma and other cancer cells as well as in the immune system.

10.
RNA Biol ; 9(7): 978-89, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22767256

RESUMO

MicroRNAs are major players in post-transcriptional gene regulation. Even small changes in miRNA levels may have profound consequences for the expression levels of target genes. Hence, miRNAs themselves need to be tightly, albeit dynamically, regulated. Here, we investigated the dynamic behavior of miRNAs over a wide time range following stimulation of melanoma cells with interferon-γ (IFN-γ), which activates the transcription factor STAT1. By applying several bioinformatic and statistical software tools for visualization and identification of differentially expressed miRNAs derived from time-series microarray experiments, 8.9% of 1105 miRNAs appeared to be directly or indirectly regulated by STAT1. Focusing on distinct dynamic expression patterns, we found that the majority of robust miRNA expression changes occurred in the intermediate time range (24-48 h). Three miRNAs (miR-27a, miR-30a, miR-34a) had a delayed regulation occurring at 72 h while none showed significant expression changes at early time points between 30 min and 6 h. Expression patterns of individual miRNAs were altered gradually over time or abruptly increased or decreased between two time points. Furthermore, we observed coordinated dynamic transcription of most miRNA clusters while few were found to be regulated independently of their genetic cluster. Most interestingly, several "star" or passenger strand sequences were specifically regulated over time while their "guide" strands were not.


Assuntos
Interferon gama/fisiologia , MicroRNAs/genética , Ativação Transcricional , Linhagem Celular Tumoral , Análise por Conglomerados , Regulação da Expressão Gênica , Humanos , Fator Regulador 1 de Interferon/metabolismo , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Processamento de Proteína Pós-Traducional , Fator de Transcrição STAT1/metabolismo , Transcriptoma
11.
Viruses ; 12(12)2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327447

RESUMO

In recent years, next generation sequencing (NGS) technology has been widely used for the discovery of novel human papillomavirus (HPV) genotypes, variant characterization and genotyping. Here, we compared the analytical performance of NGS with a commercial PCR-based assay (Anyplex II HPV28) in cervical samples of 744 women. Overall, HPV positivity was 50.2% by the Anyplex and 45.5% by the NGS. With the NGS, we detected 25 genotypes covered by Anyplex and 41 additional genotypes. Agreement between the two methods for HPV positivity was 80.8% (kappa = 0.616) and 84.8% (kappa = 0.652) for 28 HPV genotypes and 14 high-risk genotypes, respectively. We recovered and characterized 243 complete HPV genomes from 153 samples spanning 40 different genotypes. According to phylogenetic analysis and pairwise distance, we identified novel lineages and sublineages of four high-risk and 16 low-risk genotypes. In total, 17 novel lineages and 14 novel sublineages were proposed, including novel lineages of HPV45, HPV52, HPV66 and a novel sublineage of HPV59. Our study provides important genomic insights on HPV types and lineages, where few complete genomes were publicly available.


Assuntos
Alphapapillomavirus/classificação , Alphapapillomavirus/genética , Colo do Útero/virologia , Genoma Viral , Genômica , Infecções por Papillomavirus/virologia , Adolescente , Adulto , Biologia Computacional , Feminino , Variação Genética , Genômica/métodos , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas de Diagnóstico Molecular , Infecções por Papillomavirus/diagnóstico , Filogenia , Adulto Jovem
12.
BMC Med Genomics ; 12(1): 132, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533822

RESUMO

BACKGROUND: The amount of publicly available cancer-related "omics" data is constantly growing and can potentially be used to gain insights into the tumour biology of new cancer patients, their diagnosis and suitable treatment options. However, the integration of different datasets is not straightforward and requires specialized approaches to deal with heterogeneity at technical and biological levels. METHODS: Here we present a method that can overcome technical biases, predict clinically relevant outcomes and identify tumour-related biological processes in patients using previously collected large discovery datasets. The approach is based on independent component analysis (ICA) - an unsupervised method of signal deconvolution. We developed parallel consensus ICA that robustly decomposes transcriptomics datasets into expression profiles with minimal mutual dependency. RESULTS: By applying the method to a small cohort of primary melanoma and control samples combined with a large discovery melanoma dataset, we demonstrate that our method distinguishes cell-type specific signals from technical biases and allows to predict clinically relevant patient characteristics. We showed the potential of the method to predict cancer subtypes and estimate the activity of key tumour-related processes such as immune response, angiogenesis and cell proliferation. ICA-based risk score was proposed and its connection to patient survival was validated with an independent cohort of patients. Additionally, through integration of components identified for mRNA and miRNA data, the proposed method helped deducing biological functions of miRNAs, which would otherwise not be possible. CONCLUSIONS: We present a method that can be used to map new transcriptomic data from cancer patient samples onto large discovery datasets. The method corrects technical biases, helps characterizing activity of biological processes or cell types in the new samples and provides the prognosis of patient survival.


Assuntos
Biologia Computacional/métodos , Melanoma/genética , MicroRNAs/metabolismo , Transcriptoma , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Melanoma/mortalidade , Melanoma/patologia , MicroRNAs/genética , Análise de Componente Principal , Análise de Sobrevida
13.
Oncotarget ; 9(54): 30225-30239, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30100985

RESUMO

With the advent of high-throughput sequencing (HTS), profiling immunoglobulin (IG) repertoires has become an essential part of immunological research. Advances in sequencing technology enable the IonTorrent Personal Genome Machine (PGM) to cover the full-length of IG mRNA transcripts. Nucleotide insertions and deletions (indels) are the dominant errors of the PGM sequencing platform and can critically influence IG repertoire assessments. Here, we present a PGM-tailored IG repertoire sequencing approach combining error correction through unique molecular identifier (UID) barcoding and indel detection through ImMunoGeneTics (IMGT), the most commonly used sequence alignment database for IG sequences. Using artificially falsified sequences for benchmarking, we found that IMGT's underlying algorithms efficiently detect 98% of the introduced indels. Undetected indels are either located at the end of the sequences or produce masked frameshifts with an insertion and deletion in close proximity. The complementary determining regions 3 (CDR3s) are returned correct for up to 3 insertions or 3 deletions through conservative culling. We further show, that our PGM-tailored unique molecular identifiers result in highly accurate HTS data if combined with the presented processing strategy. In this regard, considering sequences with at least two copies from datasets with UID families of minimum 3 reads result in correct sequences with over 99% confidence. Finally, we show that the protocol can readily be used to generate homogenous datasets for bulk sequencing of murine bone marrow samples. Taken together, this approach will help to establish benchtop-scale sequencing of IG heavy chain transcripts in the field of IG repertoire research.

14.
Methods Mol Biol ; 1737: 213-230, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29484596

RESUMO

Outer membrane vesicles (OMVs) are released by commensal as well as pathogenic Gram-negative bacteria. These vesicles contain numerous bacterial components, such as proteins, peptidoglycans, lipopolysaccharides, DNA, and RNA. To examine if OMV-associated RNA molecules are bacterial degradation products and/or are functionally active, it is necessary to extract RNA from pure OMVs for subsequent analysis. Therefore, we describe here an isolation method of ultrapure OMVs and the subsequent extraction of RNA and basic steps of RNA-Seq analysis. Bacterial culture, extracellular supernatant concentration, OMV purification, and the subsequent RNA extraction out of OMVs are described. Specific pitfalls within the protocol and RNA contamination sources are highlighted.


Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Vesículas Extracelulares/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Bacteriano/análise , RNA Bacteriano/isolamento & purificação , Salmonella enterica/metabolismo , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Vesículas Extracelulares/genética , RNA Bacteriano/genética , Salmonella enterica/genética
15.
Front Immunol ; 8: 1834, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312330

RESUMO

The identification and tracking of antigen-specific immunoglobulin (Ig) sequences within total Ig repertoires is central to high-throughput sequencing (HTS) studies of infections or vaccinations. In this context, public Ig sequences shared by different individuals exposed to the same antigen could be valuable markers for tracing back infections, measuring vaccine immunogenicity, and perhaps ultimately allow the reconstruction of the immunological history of an individual. Here, we immunized groups of transgenic rats expressing human Ig against tetanus toxoid (TT), Modified Vaccinia virus Ankara (MVA), measles virus hemagglutinin and fusion proteins expressed on MVA, and the environmental carcinogen benzo[a]pyrene, coupled to TT. We showed that these antigens impose a selective pressure causing the Ig heavy chain (IgH) repertoires of the rats to converge toward the expression of antibodies with highly similar IgH CDR3 amino acid sequences. We present a computational approach, similar to differential gene expression analysis, that selects for clusters of CDR3s with 80% similarity, significantly overrepresented within the different groups of immunized rats. These IgH clusters represent antigen-induced IgH signatures exhibiting stereotypic amino acid patterns including previously described TT- and measles-specific IgH sequences. Our data suggest that with the presented methodology, transgenic Ig rats can be utilized as a model to identify antigen-induced, human IgH signatures to a variety of different antigens.

16.
J Clin Bioinforma ; 2: 7, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22414553

RESUMO

The 6th Benelux Bioinformatics Conference (BBC11) held in Luxembourg on 12 and 13 December 2011 attracted around 200 participants, including internationally-renowned guest speakers and more than 100 peer-reviewed submissions from 3 continents. Researchers from the public and private sectors convened at BBC11 to discuss advances and challenges in a wide spectrum of application areas. A key theme of the conference was the contribution of bioinformatics to enable and accelerate translational and clinical research. The BBC11 stressed the need for stronger collaborating efforts across disciplines and institutions. The demonstration of the clinical relevance of systems approaches and of next-generation sequencing-based measurement technologies are among the existing opportunities for increasing impact in translational research. Translational bioinformatics will benefit from research models that strike a balance between the importance of protecting intellectual property and the need to openly access scientific and technological advances. The full conference proceedings are freely available at http://www.bbc11.lu.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA