Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35465056

RESUMO

Background: SARS-CoV-2 infection activates interferon-controlled signaling pathways and elicits a wide spectrum of immune responses and clinical manifestations in human patients. Methods: Here, we investigate the impact of prior vaccination on the innate immune response of hospitalized COVID-19 patients infected with the SARS-CoV-2 Beta variant through RNA sequencing of peripheral blood immune cells. Four patients had received the first dose of BNT162b2 about 11 days prior to the onset of COVID-19 symptoms and five patients were unvaccinated. Patients had received dexamethasone treatment. Immune transcriptomes were obtained at days 7-13, 20-32 and 42-60 after first symptomology. Results: RNA-seq reveals an enhanced JAK-STAT-mediated immune transcriptome response at day 10 in vaccinated patients as compared to unvaccinated ones. This increase subsides by day 35. Expression of the gene encoding the antiviral protein oligoadenylate synthetase (OAS) 1, which is inversely correlated with disease severity, and other key antiviral proteins increases in the vaccinated group. We also investigate the immune transcriptome in naïve individuals receiving their first dose of BNT162b2 and identify a gene signature shared with the vaccinated COVID-19 patients. Conclusions: Our study demonstrates that RNA-seq can be used to monitor molecular immune responses elicited by the BNT162b2 vaccine, both in naïve individuals and in COVID-19 patients, and it provides a biomarker-based approach to systems vaccinology.

2.
Sci Rep ; 12(1): 2784, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181735

RESUMO

Fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) energize the COVID-19 pandemic. While viral infections elicit a conserved immune response, it is not known whether SARS-CoV-2 variants, which display enhanced binding to the ACE2 receptor and reduced neutralizing activity by vaccine-elicited antibodies, prompt specific genomic immune responses. To test this, we generated and investigated the transcriptomes in BCs from hospitalized patients infected with either the Alpha variant (n = 36) or with the Alpha variant that had acquired the E484K escape mutation (Alpha+E484K) (n = 13). We identified a gene module preferentially activated in patients infected with the Alpha+E484K variant and in patients infected with the Beta (n = 9) and Gamma (n = 3) variants that also carry by the E484K escape mutation. The E484K signature was enriched for genes preferentially expressed in monocytes and linked to severe viral infection. However, both cohorts had undergone similar treatments and no differences in disease severity were reported suggesting that this signature reflects a variant response and does not necessarily associate with disease outcome. Additionally, longitudinal transcriptome analyses revealed a more persistent retention of immune signatures in Alpha+E484K patients throughout the entire course of COVID-19 disease and convalescence. While the OAS1 Neanderthal mutation has been linked to a milder COVID-19 pathology, we did not identify significant immune transcriptomes differences in the 25 patients homozygous for this mutation. Our study offers insights into distinct molecular immune responses elicited by SARS-CoV-2 variants carrying the E484K escape mutation throughout the COVID-19 disease.


Assuntos
COVID-19/imunologia , Redes Reguladoras de Genes , SARS-CoV-2/genética , Transcriptoma , 2',5'-Oligoadenilato Sintetase/genética , Adulto , Idoso , COVID-19/genética , COVID-19/virologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
medRxiv ; 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34100027

RESUMO

Fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) energize the COVID-19 pandemic. B.1.1.7 (VOC-202012/01) has become the predominant variant in many countries and a new lineage (VOC-202102/02) harboring the E484K escape mutation in the B.1.1.7 background emerged in February 2021 1 . This variant is of concern due to reduced neutralizing activity by vaccine-elicited antibodies 2,3 . However, it is not known whether this single amino acid change leads to an altered immune response. Here, we investigate differences in the immune transcriptome in hospitalized patients infected with either B.1.1.7 (n=28) or B.1.1.7+E484K (n=12). RNA-seq conducted on PBMCs isolated within five days after the onset of COVID symptoms demonstrated elevated activation of specific immune pathways, including JAK-STAT signaling, in B.1.1.7+E484K patients as compared to B.1.1.7. Longitudinal transcriptome studies demonstrated a delayed dampening of interferon-activated pathways in B.1.1.7+E484K patients. Prior vaccination with BNT162b vaccine (n=8 one dose; n=1 two doses) reduced the transcriptome inflammatory response to B.1.1.7+E484K infection relative to unvaccinated patients. Lastly, the immune transcriptome of patients infected with additional variants (B.1.258, B.1.1.163 and B.1.7.7) displayed a reduced activation compared to patients infected with B.1.1.7. Acquisition of the E484K substitution in the B.1.1.7 background elicits an altered immune response, which could impact disease progression.

4.
Res Sq ; 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100009

RESUMO

Fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) energize the COVID-19 pandemic. The B.1.351 variant carrying the escape mutation E484K in the receptor binding domain is of particular concern due to reduced immunological protection following vaccination. Protection can manifest as early as 10 days following immunization with full protection two weeks following the second dose, but the course is not well-characterized for variants. Here, we investigated the immune transcriptome of six elderly individuals (average age 82 yr.) from an old people’s home, who contracted B.1.351, with four having received the first dose of BNT162b eight to 11 days prior to the onset of COVID-19 symptoms. The patients were hospitalized and received dexamethasone treatment. Immune transcriptomes were established from PBMCs approximately 10 and 35 days after the onset of COVID-19 symptomology. RNA-seq revealed a more intensive immune response in vaccinated patients as compared to unvaccinated ones. Specifically, transcription factors linked to the JAK/STAT pathway, interferon stimulated genes, and genes associated with innate antiviral immunity and COVID-19-SARS-CoV-2 infection were highly enriched in vaccinated patients. This rendered the transcriptomes of the older vaccinated group significantly different than older unvaccinated individuals infected at the same institution and more similar to the immune response of younger unvaccinated individuals (ages 48-62) following B.1.351 infection. All individuals in this study whether vaccinated or not were hospitalized due to B.1.351 infection and one vaccinated patient died illustrating that although an enhanced immune response was documented infection it was insufficient to protect from disease. This highlights the need for maintaining physical distancing and prevention measures throughout the time course of vaccination in older adults.

5.
Biomedicines ; 9(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34440208

RESUMO

Since tissue material is often lacking in metastatic prostate cancer (mPCa), there is increasing interest in using liquid biopsies for treatment decision and monitoring therapy responses. The purpose of this study was to validate the usefulness of circulating tumor cells (CTCs) and plasma-derived cell-free (cf) RNA as starting material for gene expression analysis through qPCR. CTCs were identified upon prostate-specific membrane antigen and/or cytokeratin positivity after enrichment with ScreenCell (Westford, Massachusetts, USA) filters or the microfluidic ParsortixTM (Guildford, Surrey, United Kingdom) system. Overall, 50% (28/56) of the patients had ≥5 CTCs/7.5 mL of blood. However, CTC count did not correlate with Gleason score, serum PSA, or gene expression. Notably, we observed high expression of CD45 in CTC samples after enrichment, which could be successfully eliminated through picking of single cells. Gene expression in picked CTCs was, however, rather low. In cfRNA from plasma, on the other hand, gene expression levels were higher compared to those found in CTCs. Moreover, we found that PSA was significantly increased in plasma-derived cfRNA of mPCa patients compared to healthy controls. High PSA expression was also associated with poor overall survival, indicating that using cfRNA from plasma could be used as a valuable tool for molecular expression analysis.

6.
medRxiv ; 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34013280

RESUMO

Fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) energize the COVID-19 pandemic. The B.1.351 variant carrying the escape mutation E484K in the receptor binding domain is of particular concern due to reduced immunological protection following vaccination. Protection can manifest as early as 10 days following immunization with full protection two weeks following the second dose, but the course is not well-characterized for variants. Here, we investigated the immune transcriptome of six elderly individuals (average age 82 yr.) from an old people's home, who contracted B.1.351, with four having received the first dose of BNT162b eight to 11 days prior to the onset of COVID-19 symptoms. The patients were hospitalized and received dexamethasone treatment. Immune transcriptomes were established from PBMCs approximately 10 and 35 days after the onset of COVID-19 symptomology. RNA-seq revealed a more intensive immune response in vaccinated patients as compared to unvaccinated ones. Specifically, transcription factors linked to the JAK/STAT pathway, interferon stimulated genes, and genes associated with innate antiviral immunity and COVID-19-SARS-CoV-2 infection were highly enriched in vaccinated patients. This rendered the transcriptomes of the older vaccinated group significantly different than older unvaccinated individuals infected at the same institution and more similar to the immune response of younger unvaccinated individuals (age range 48-62) following B.1.351 infection. All individuals in this study whether vaccinated or not were hospitalized due to B.1.351 infection and one vaccinated patient died illustrating that although an enhanced immune response was documented infection it was insufficient to protect from disease. This highlights the need for maintaining physical distancing and prevention measures throughout the time course of vaccination in older adults.

7.
J Oncol ; 2012: 901956, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22619676

RESUMO

The eukaryotic translation initiation factor eIF3a is one of the core subunits of the translation initiation complex eIF3, responsible for ribosomal subunit joining and mRNA recruitment to the ribosome. It is known to play an important role in general translation initiation as well as in the specific translational regulation of various gene products, among which many influence tumour development, progression, and the therapeutically important pathways of DNA damage repair. Therefore, beyond its role in protein synthesis, eIF3a is emerging as regulator in tumour pathogenesis and therapy response and, therefore, a potential tumor marker. By means of a tissue microarray (TMA) for histopathological and statistical assessment, we here show eIF3a expression in 103 cases of squamous cell carcinoma of the oral cavity (OSCC), representing tissues from 103 independent patients. A subset of the study cohort was treated with platinum based therapy. Our results show that the 170 kDa protein is upregulated in OSCC and correlates with good overall survival. Overexpressing tumors respond better to platinum-based chemotherapy, suggesting eIF3a as a putative predictive as well as prognostic tumor marker in OSCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA