Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 75(1): 90-101.e5, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31080012

RESUMO

CRISPR and associated Cas proteins function as an adaptive immune system in prokaryotes to combat bacteriophage infection. During the immunization step, new spacers are acquired by the CRISPR machinery, but the molecular mechanism of spacer capture remains enigmatic. We show that the Cas9, Cas1, Cas2, and Csn2 proteins of a Streptococcus thermophilus type II-A CRISPR-Cas system form a complex and provide cryoelectron microscopy (cryo-EM) structures of three different assemblies. The predominant form, with the stoichiometry Cas18-Cas24-Csn28, referred to as monomer, contains ∼30 bp duplex DNA bound along a central channel. A minor species, termed a dimer, comprises two monomers that sandwich a further eight Cas1 and four Cas2 subunits and contains two DNA ∼30-bp duplexes within the channel. A filamentous form also comprises Cas18-Cas24-Csn28 units (typically 2-6) but with a different Cas1-Cas2 interface between them and a continuous DNA duplex running along a central channel.


Assuntos
Proteína 9 Associada à CRISPR/química , Sistemas CRISPR-Cas , DNA Intergênico/química , DNA/química , Streptococcus thermophilus/genética , Sequência de Bases , Sítios de Ligação , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Clonagem Molecular , Microscopia Crioeletrônica , DNA/genética , DNA/metabolismo , DNA Intergênico/genética , DNA Intergênico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus thermophilus/metabolismo , Especificidade por Substrato
2.
Cell ; 137(5): 849-59, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19490894

RESUMO

Superfamily 1B (SF1B) helicases translocate in a 5'-3' direction and are required for a range of cellular activities across all domains of life. However, structural analyses to date have focused on how SF1A helicases achieve 3'-5' movement along nucleic acids. We present crystal structures of the complex between the SF1B helicase RecD2 from Deinococcus radiodurans and ssDNA in the presence and absence of an ATP analog. These snapshots of the reaction pathway reveal a nucleotide binding-induced conformational change of the two motor domains that is broadly reminiscent of changes observed in other SF1 and SF2 helicases. Together with biochemical data, the structures point to a step size for translocation of one base per ATP hydrolyzed. Moreover, the structures also reveal a mechanism for nucleic acid translocation in the 5'-3' direction by SF1B helicases that is surprisingly different from that of 3'-5' translocation by SF1A enzymes, and explains the molecular basis of directionality.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Deinococcus/enzimologia , Trifosfato de Adenosina/análogos & derivados , Cristalografia por Raios X , DNA de Cadeia Simples/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína
3.
Nature ; 556(7701): 391-395, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29643506

RESUMO

Access to DNA within nucleosomes is required for a variety of processes in cells including transcription, replication and repair. Consequently, cells encode multiple systems that remodel nucleosomes. These complexes can be simple, involving one or a few protein subunits, or more complicated multi-subunit machines 1 . Biochemical studies2-4 have placed the motor domains of several chromatin remodellers in the superhelical location 2 region of the nucleosome. Structural studies of yeast Chd1 and Snf2-a subunit in the complex with the capacity to remodel the structure of chromatin (RSC)-in complex with nucleosomes5-7 have provided insights into the basic mechanism of nucleosome sliding performed by these complexes. However, how larger, multi-subunit remodelling complexes such as INO80 interact with nucleosomes and how remodellers carry out functions such as nucleosome sliding 8 , histone exchange 9 and nucleosome spacing10-12 remain poorly understood. Although some remodellers work as monomers 13 , others work as highly cooperative dimers11, 14, 15. Here we present the structure of the human INO80 chromatin remodeller with a bound nucleosome, which reveals that INO80 interacts with nucleosomes in a previously undescribed manner: the motor domains are located on the DNA at the entry point to the nucleosome, rather than at superhelical location 2. The ARP5-IES6 module of INO80 makes additional contacts on the opposite side of the nucleosome. This arrangement enables the histone H3 tails of the nucleosome to have a role in the regulation of the activities of the INO80 motor domain-unlike in other characterized remodellers, for which H4 tails have been shown to regulate the motor domains.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Actinas/química , Actinas/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Domínios Proteicos , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
4.
Nature ; 508(7496): 416-9, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24670664

RESUMO

In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence χ (Chi) and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease (reviewed in refs 3, 4). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a χ sequence, whereupon they produce a 3' single-stranded DNA tail onto which they initiate loading of the RecA protein. Consequently, regulation of the AddAB/RecBCD complex by χ is a key control point in DNA repair and other processes involving genetic recombination. Here we report crystal structures of Bacillus subtilis AddAB in complex with different χ-containing DNA substrates either with or without a non-hydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, suggests how the enzyme binds specifically to χ sequences, and explains how χ recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single-molecule experiments.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA Helicases/química , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Recombinação Genética/genética , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , DNA Helicases/metabolismo , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade
5.
Nucleic Acids Res ; 45(12): 7249-7260, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28499038

RESUMO

We have prepared recombinant fourteen subunit yeast SWR1 complex from insect cells using a modified MultiBac system. The 1.07 MDa recombinant protein complex has histone-exchange activity. Full exchange activity is realized with a single SWR1 complex bound to a nucleosome. We also prepared mutant complexes that lack a variety of subunits or combinations of subunits and these start to reveal roles for some of these subunits as well as indicating interactions between them in the full complex. Complexes containing a series of N-terminally and C-terminally truncated Swr1 subunits reveal further details about interactions between subunits as well as their binding sites on the Swr1 subunit. Finally, we present electron microscopy studies revealing the dynamic nature of the complex and a 21 Å resolution reconstruction of the intact complex provides details not apparent in previously reported structures, including a large central cavity of sufficient size to accommodate a nucleosome.


Assuntos
Adenosina Trifosfatases/química , Histonas/genética , Nucleossomos/química , Subunidades Proteicas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Clonagem Molecular , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Expressão Gênica , Histonas/metabolismo , Insetos , Lepidópteros , Modelos Moleculares , Nucleossomos/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Nucleic Acids Res ; 45(7): 3875-3887, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28160601

RESUMO

The PcrA/UvrD helicase functions in multiple pathways that promote bacterial genome stability including the suppression of conflicts between replication and transcription and facilitating the repair of transcribed DNA. The reported ability of PcrA/UvrD to bind and backtrack RNA polymerase (1,2) might be relevant to these functions, but the structural basis for this activity is poorly understood. In this work, we define a minimal RNA polymerase interaction domain in PcrA, and report its crystal structure at 1.5 Å resolution. The domain adopts a Tudor-like fold that is similar to other RNA polymerase interaction domains, including that of the prototype transcription-repair coupling factor Mfd. Removal or mutation of the interaction domain reduces the ability of PcrA/UvrD to interact with and to remodel RNA polymerase complexes in vitro. The implications of this work for our understanding of the role of PcrA/UvrD at the interface of DNA replication, transcription and repair are discussed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Aminoácidos/química , Geobacillus stearothermophilus/enzimologia , Modelos Moleculares , Ligação Proteica , Elongação da Transcrição Genética , Domínio Tudor
7.
Nucleic Acids Res ; 44(17): 8179-88, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27257055

RESUMO

We have purified a minimal core human Ino80 complex from recombinant protein expressed in insect cells. The complex comprises one subunit each of an N-terminally truncated Ino80, actin, Arp4, Arp5, Arp8, Ies2 and Ies6, together with a single heterohexamer of the Tip49a and Tip49b proteins. This core complex has nucleosome sliding activity that is similar to that of endogenous human and yeast Ino80 complexes and is also inhibited by inositol hexaphosphate (IP6). We show that IP6 is a non-competitive inhibitor that acts by blocking the stimulatory effect of nucleosomes on the ATPase activity. The IP6 binding site is located within the C-terminal region of the Ino80 subunit. We have also prepared complexes lacking combinations of Ies2 and Arp5/Ies6 subunits that reveal regulation imposed by each of them individually and synergistically that couples ATP hydrolysis to nucleosome sliding. This coupling between Ies2 and Arp5/Ies6 can be overcome in a bypass mutation of the Arp5 subunit that is active in the absence of Ies2. These studies reveal several underlying mechanisms for regulation of ATPase activity involving a complex interplay between these protein subunits and IP6 that in turn controls nucleosome sliding.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Proteínas Recombinantes/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Proteínas de Ligação a DNA , Eletroforese em Gel de Poliacrilamida , Transferência Ressonante de Energia de Fluorescência , Humanos , Hidrólise , Complexos Multiproteicos/metabolismo , Mutação/genética , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Ácido Fítico/farmacologia , Subunidades Proteicas/metabolismo
8.
Nucleic Acids Res ; 44(6): 2727-41, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26762979

RESUMO

In bacteria, the repair of double-stranded DNA breaks is modulated by Chi sequences. These are recognised by helicase-nuclease complexes that process DNA ends for homologous recombination. Chi activates recombination by changing the biochemical properties of the helicase-nuclease, transforming it from a destructive exonuclease into a recombination-promoting repair enzyme. This transition is thought to be controlled by the Chi-dependent opening of a molecular latch, which enables part of the DNA substrate to evade degradation beyond Chi. Here, we show that disruption of the latch improves Chi recognition efficiency and stabilizes the interaction of AddAB with Chi, even in mutants that are impaired for Chi binding. Chi recognition elicits a structural change in AddAB that maps to a region of AddB which resembles a helicase domain, and which harbours both the Chi recognition locus and the latch. Mutation of the latch potentiates the change and moderately reduces the duration of a translocation pause at Chi. However, this mutant displays properties of Chi-modified AddAB even in the complete absence of bona fide hotspot sequences. The results are used to develop a model for AddAB regulation in which allosteric communication between Chi binding and latch opening ensures quality control during recombination hotspot recognition.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , DNA Helicases/química , DNA Bacteriano/química , Exodesoxirribonucleases/química , Reparo de DNA por Recombinação , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Expressão Gênica , Modelos Moleculares , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
9.
EMBO J ; 31(6): 1568-78, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22307084

RESUMO

In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence Chi and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease. Here, we report the crystal structure of AddAB bound to DNA. The structure allows identification of a putative Chi-recognition site in an inactivated helicase domain of the AddB subunit. By generating mutant protein complexes that do not respond to Chi, we show that residues responsible for Chi recognition are located in positions equivalent to the signature motifs of a conventional helicase. Comparison with the related RecBCD complex, which recognizes a different Chi sequence, provides further insight into the structural basis for sequence-specific ssDNA recognition. The structure suggests a simple mechanism for DNA break processing, explains how AddAB and RecBCD can accomplish the same overall reaction with different sets of functional modules and reveals details of the role of an Fe-S cluster in protein stability and DNA binding.


Assuntos
DNA Helicases/química , Desoxirribonucleases/química , Exodesoxirribonucleases/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Exodesoxirribonuclease V/química , Exodesoxirribonuclease V/genética , Exodesoxirribonuclease V/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Recombinação Homóloga , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Terciária de Proteína
10.
Proc Natl Acad Sci U S A ; 109(51): 20883-8, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23213201

RESUMO

Actin-related protein Arp8 is a component of the INO80 chromatin remodeling complex. Yeast Arp8 (yArp8) comprises two domains: a 25-KDa N-terminal domain, found only in yeast, and a 75-KDa C-terminal domain (yArp8CTD) that contains the actin fold and is conserved across other species. The crystal structure shows that yArp8CTD contains three insertions within the actin core. Using a combination of biochemistry and EM, we show that Arp8 forms a complex with nucleosomes, and that the principal interactions are via the H3 and H4 histones, mediated through one of the yArp8 insertions. We show that recombinant yArp8 exists in monomeric and dimeric states, but the dimer is the biologically relevant form required for stable interactions with histones that exploits the twofold symmetry of the nucleosome core. Taken together, these data provide unique insight into the stoichiometry, architecture, and molecular interactions between components of the INO80 remodeling complex and nucleosomes, providing a first step toward building up the structure of the complex.


Assuntos
Montagem e Desmontagem da Cromatina , Histonas/química , Proteínas dos Microfilamentos/química , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Difosfato de Adenosina/química , Sítios de Ligação , Cristalografia por Raios X/métodos , Dimerização , Imageamento Tridimensional/métodos , Modelos Moleculares , Nucleossomos/química , Nucleotídeos/química , Conformação Proteica , Estrutura Terciária de Proteína
11.
Proc Natl Acad Sci U S A ; 109(23): 8901-6, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22603794

RESUMO

The RecBCD enzyme is important for both restriction of foreign DNA and recombinational DNA repair. Switching enzyme function from the destructive antiviral state to the productive recombinational state is regulated by the recombination hotspot, χ (5'-GCTGGTGG-3'). Recognition of χ is unique in that it is recognized as a specific sequence within single-stranded DNA (ssDNA) during DNA translocation and unwinding by RecBCD. The molecular determinants of χ recognition and the subsequent alteration in function are unknown. Consequently, we mutated residues within the RecC subunit that comprise a channel where ssDNA is thought to be scanned for a χ sequence. These mutants were characterized in vivo with regard to χ recognition, UV-sensitivity, phage degradation, and recombination proficiency. Of 38 residues mutated, 11 were previously undescribed mutations that altered χ recognition. The mutants fell into two classes: five that failed to respond to χ, and six that suggested a relaxed specificity for χ recognition. The location of the first set of mutations defines a recognition structure responsible for sequence-specific binding of ssDNA. The second set defines a highly conserved structure, linked to the recognition structure, which we hypothesize regulates conversion of RecBCD from a molecular machine that destroys DNA to one that repairs it. These findings offer insight into the evolution of enzymes with alternate χ recognition specificities.


Assuntos
Reparo do DNA/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli/enzimologia , Exodesoxirribonuclease V/metabolismo , Modelos Moleculares , Sequências Reguladoras de Ácido Nucleico/genética , Sequência de Aminoácidos , Biologia Computacional , Primers do DNA/genética , Reparo do DNA/fisiologia , DNA de Cadeia Simples/genética , Proteínas de Escherichia coli/genética , Exodesoxirribonuclease V/genética , Dados de Sequência Molecular , Mutagênese , Plasmídeos/genética , Alinhamento de Sequência
12.
Proc Natl Acad Sci U S A ; 109(23): 8907-12, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22603793

RESUMO

The RecBCD enzyme is a complex heterotrimeric helicase/nuclease that initiates recombination at double-stranded DNA breaks. In Escherichia coli, its activities are regulated by the octameric recombination hotspot, χ (5'-GCTGGTGG), which is read as a single-stranded DNA sequence while the enzyme is unwinding DNA at over ∼1,000 bp/s. Previous studies implicated the RecC subunit as the "χ-scanning element" in this process. Site-directed mutagenesis and phenotypic analyses identified residues in RecC responsible for χ recognition [Handa N, et al., (2012) Proc Natl Acad Sci USA, 10.1073/pnas.1206076109]. The genetic analyses revealed two classes of mutants. Here we use ensemble and single-molecule criteria to biochemically establish that one class of mutants (type 1) has lost the capacity to recognize χ (lost-recognition), whereas the second class (type 2) has a lowered specificity for recognition (relaxed-specificity). The relaxed-specificity mutants still recognize canonical χ, but they have gained the capacity to precociously recognize single-nucleotide variants of χ. Based on the RecBCD structure, these mutant classes define an α-helix responsible for χ recognition that is allosterically coupled to a structural latch. When opened, we propose that the latch permits access to an alternative exit channel for the single-stranded DNA downstream of χ, thereby avoiding degradation by the nuclease domain. These findings provide a unique perspective into the mechanism by which recognition of a single-stranded DNA sequence switches the translocating RecBCD from a destructive nuclease to a constructive component of recombinational DNA repair.


Assuntos
Reparo do DNA/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli/enzimologia , Exodesoxirribonuclease V/metabolismo , Modelos Moleculares , Sequências Reguladoras de Ácido Nucleico/genética , Reparo do DNA/fisiologia , DNA de Cadeia Simples/genética , Proteínas de Escherichia coli/genética , Exodesoxirribonuclease V/genética , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína/genética , Estrutura Secundária de Proteína/fisiologia , Especificidade por Substrato
13.
EMBO J ; 27(16): 2222-9, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18668125

RESUMO

The molecular mechanism of superfamily 1Balpha helicases remains unclear. We present here the crystal structure of the RecD2 helicase from Deinococcus radiodurans at 2.2-A resolution. The structure reveals the folds of the 1B and 2B domains of RecD that were poorly ordered in the structure of the Escherichia coli RecBCD enzyme complex reported previously. The 2B domain adopts an SH3 fold which, although common in eukaryotes, is extremely rare in bacterial systems. In addition, the D. radiodurans RecD2 structure has aided us in deciphering lower resolution (3.6 A) electron density maps for the E. coli RecBCD enzyme in complex with a long DNA substrate that interacts with the RecD subunit. Taken together, these structures indicated an important role for the 1B domain of RecD, a beta-hairpin that extends from the surface of the 1A domain and interacts with the DNA substrate. On the basis of these structural data, we designed a mutant RecD2 helicase that lacks this pin. The 'pin-less' mutant protein is a fully active ssDNA-dependent ATPase but totally lacks helicase activity.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , DNA/metabolismo , Deinococcus/enzimologia , Exodesoxirribonuclease V/química , Exodesoxirribonuclease V/metabolismo , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
14.
Elife ; 112022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36533901

RESUMO

Following infection of bacterial cells, bacteriophage modulate double-stranded DNA break repair pathways to protect themselves from host immunity systems and prioritise their own recombinases. Here, we present biochemical and structural analysis of two phage proteins, gp5.9 and Abc2, which target the DNA break resection complex RecBCD. These exemplify two contrasting mechanisms for control of DNA break repair in which the RecBCD complex is either inhibited or co-opted for the benefit of the invading phage. Gp5.9 completely inhibits RecBCD by preventing it from binding to DNA. The RecBCD-gp5.9 structure shows that gp5.9 acts by substrate mimicry, binding predominantly to the RecB arm domain and competing sterically for the DNA binding site. Gp5.9 adopts a parallel coiled-coil architecture that is unprecedented for a natural DNA mimic protein. In contrast, binding of Abc2 does not substantially affect the biochemical activities of isolated RecBCD. The RecBCD-Abc2 structure shows that Abc2 binds to the Chi-recognition domains of the RecC subunit in a position that might enable it to mediate the loading of phage recombinases onto its single-stranded DNA products.


Assuntos
Bacteriófagos , Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Exodesoxirribonuclease V/genética , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Recombinases/metabolismo , Exodesoxirribonucleases/química , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , DNA Bacteriano/metabolismo
15.
Nature ; 432(7014): 187-93, 2004 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-15538360

RESUMO

RecBCD is a multi-functional enzyme complex that processes DNA ends resulting from a double-strand break. RecBCD is a bipolar helicase that splits the duplex into its component strands and digests them until encountering a recombinational hotspot (Chi site). The nuclease activity is then attenuated and RecBCD loads RecA onto the 3' tail of the DNA. Here we present the crystal structure of RecBCD bound to a DNA substrate. In this initiation complex, the DNA duplex has been split across the RecC subunit to create a fork with the separated strands each heading towards different helicase motor subunits. The strands pass along tunnels within the complex, both emerging adjacent to the nuclease domain of RecB. Passage of the 3' tail through one of these tunnels provides a mechanism for the recognition of a Chi sequence by RecC within the context of double-stranded DNA. Gating of this tunnel suggests how nuclease activity might be regulated.


Assuntos
Dano ao DNA , Reparo do DNA , DNA/metabolismo , Escherichia coli/enzimologia , Exodesoxirribonuclease V/química , Exodesoxirribonuclease V/metabolismo , Cristalização , Cristalografia por Raios X , DNA/química , DNA/genética , DNA Helicases/química , DNA Helicases/metabolismo , Endonucleases/química , Endonucleases/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Conformação de Ácido Nucleico , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
16.
Trends Biochem Sci ; 30(8): 437-44, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16002295

RESUMO

In eukaryotes, numerous lines of evidence have coalesced into a convincing case that the MCM2-7 complex - a heterohexameric ATPase - is the replicative DNA helicase. However, almost nothing is known about how this enzyme functions in a cellular context. Some models for the mechanism of the MCM2-7 helicase envision that it translocates along single-stranded DNA (ssDNA), whereas, more recently, it is has been suggested that it pumps double-stranded DNA (dsDNA) through its central channel. In particular, one model in which a double hexamer of MCM2-7 pumps dsDNA towards the hexamer interface and extrudes ssDNA laterally as a result of torsional strain is gaining popularity. Here, we discuss existing models and propose a new variation in which a single hexamer is the functional unit of the helicase. Duplex DNA is pumped into MCM2-7 and, as it emerges from the complex, a rigid protein that we term the 'ploughshare' splits the duplex.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Animais , DNA/genética , Replicação do DNA , Humanos , Ligação Proteica
17.
Curr Opin Struct Biol ; 61: 50-58, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31838293

RESUMO

The INO80 family of chromatin remodellers are multisubunit complexes that perform a variety of tasks on nucleosomes. Family members are built around a heterohexamer of RuvB-like protein, an ATP-dependent DNA translocase,nuclear actin and actin-related proteins, and a few complex-specific subunits. They modify chromatin in a number of ways including nucleosome sliding and exchange of variant histones. Recent structural information on INO80 and SWR1 complexes has revealed similarities in the basic architecture of the complexes. However, structural and biochemical data on the complexes bound to nucleosomes reveal these similarities to be somewhat superficial and their biochemical activities and mechanisms are very different. Consequently, the INO80 family displays a surprising diversity of function that is based upon a similar structural framework.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , Adenosina Trifosfatases/química , Montagem e Desmontagem da Cromatina , Cromatina/química , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Complexos Multiproteicos/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas , Regulação da Expressão Gênica , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexos Multiproteicos/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
18.
Nat Struct Mol Biol ; 27(1): 71-77, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31907455

RESUMO

The RecBCD complex plays key roles in phage DNA degradation, CRISPR array acquisition (adaptation) and host DNA repair. The switch between these roles is regulated by a DNA sequence called Chi. We report cryo-EM structures of the Escherichia coli RecBCD complex bound to several different DNA forks containing a Chi sequence, including one in which Chi is recognized and others in which it is not. The Chi-recognized structure shows conformational changes in regions of the protein that contact Chi and reveals a tortuous path taken by the DNA. Sequence specificity arises from interactions with both the RecC subunit and the sequence itself. These structures provide molecular details for how Chi is recognized and insights into the changes that occur in response to Chi binding that switch RecBCD from bacteriophage destruction and CRISPR spacer acquisition to constructive host DNA repair.


Assuntos
Reparo do DNA , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Exodesoxirribonuclease V/metabolismo , Bacteriófago lambda/fisiologia , Sequência de Bases , Sítios de Ligação , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Microscopia Crioeletrônica , DNA Bacteriano/química , DNA Bacteriano/ultraestrutura , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Exodesoxirribonuclease V/química , Exodesoxirribonuclease V/ultraestrutura , Simulação de Acoplamento Molecular , Conformação Proteica
19.
Mol Metab ; 40: 101015, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32416313

RESUMO

OBJECTIVE: Risk alleles for type 2 diabetes at the STARD10 locus are associated with lowered STARD10 expression in the ß-cell, impaired glucose-induced insulin secretion, and decreased circulating proinsulin:insulin ratios. Although likely to serve as a mediator of intracellular lipid transfer, the identity of the transported lipids and thus the pathways through which STARD10 regulates ß-cell function are not understood. The aim of this study was to identify the lipids transported and affected by STARD10 in the ß-cell and the role of the protein in controlling proinsulin processing and insulin granule biogenesis and maturation. METHODS: We used isolated islets from mice deleted selectively in the ß-cell for Stard10 (ßStard10KO) and performed electron microscopy, pulse-chase, RNA sequencing, and lipidomic analyses. Proteomic analysis of STARD10 binding partners was executed in the INS1 (832/13) cell line. X-ray crystallography followed by molecular docking and lipid overlay assay was performed on purified STARD10 protein. RESULTS: ßStard10KO islets had a sharply altered dense core granule appearance, with a dramatic increase in the number of "rod-like" dense cores. Correspondingly, basal secretion of proinsulin was increased versus wild-type islets. The solution of the crystal structure of STARD10 to 2.3 Å resolution revealed a binding pocket capable of accommodating polyphosphoinositides, and STARD10 was shown to bind to inositides phosphorylated at the 3' position. Lipidomic analysis of ßStard10KO islets demonstrated changes in phosphatidylinositol levels, and the inositol lipid kinase PIP4K2C was identified as a STARD10 binding partner. Also consistent with roles for STARD10 in phosphoinositide signalling, the phosphoinositide-binding proteins Pirt and Synaptotagmin 1 were amongst the differentially expressed genes in ßStard10KO islets. CONCLUSION: Our data indicate that STARD10 binds to, and may transport, phosphatidylinositides, influencing membrane lipid composition, insulin granule biosynthesis, and insulin processing.


Assuntos
Diabetes Mellitus Tipo 2/genética , Fosfoproteínas/metabolismo , Alelos , Animais , Proteínas de Transporte/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Feminino , Insulina/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Simulação de Acoplamento Molecular , Fosfatidilinositóis/metabolismo , Fosfoproteínas/genética , Ligação Proteica , Proteômica , Fatores de Risco , Vesículas Secretórias/metabolismo
20.
Elife ; 82019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30601117

RESUMO

CtIP is involved in the resection of broken DNA during the S and G2 phases of the cell cycle for repair by recombination. Acting with the MRN complex, it plays a particularly important role in handling complex DNA end structures by localised nucleolytic processing of DNA termini in preparation for longer range resection. Here we show that human CtIP is a tetrameric protein adopting a dumbbell architecture in which DNA binding domains are connected by long coiled-coils. The protein complex binds two short DNA duplexes with high affinity and bridges DNA molecules in trans. DNA binding is potentiated by dephosphorylation and is not specific for DNA end structures per se. However, the affinity for linear DNA molecules is increased if the DNA terminates with complex structures including forked ssDNA overhangs and nucleoprotein conjugates. This work provides a biochemical and structural basis for the function of CtIP at complex DNA breaks.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/química , DNA/química , Endodesoxirribonucleases/química , Multimerização Proteica , Sequência de Aminoácidos , Sítios de Ligação/genética , Ligação Competitiva , DNA/metabolismo , DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Conformação de Ácido Nucleico , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA