Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Phys Chem Chem Phys ; 26(14): 10951-10960, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526375

RESUMO

Continuous efforts are ongoing to discover new luminescent materials with appropriate properties for applications in medicine, serving as theranostic agents for healing and bioimaging. In this paper, novel single-phase carbonated calcium chlorapatite (Ca10(PO4)5(CO3)Cl2, abbreviated as CaClAp-CO3) phosphors activated with varying concentrations of Sm3+ ions were successfully fabricated using both co-precipitation and hydrothermal methods to investigate the influence of the synthesis techniques on the physicochemical properties of these materials. The effects of doping concentration of Sm3+ ions and synthesis techniques on the structure, photoluminescence (PL), energy transfer, substitute sites, fluorescence lifetime and luminescence colour of phosphors were investigated. The synthesized phosphors were characterized by X-ray diffraction (XRD) to confirm their crystal phase structure and purity. Vibrational features and the incorporation of carbonate ions were verified using Fourier-transform infrared (FTIR) spectroscopy. The obtained materials emit reddish-orange light, primarily from the most intense 4G5/2 → 6H7/2 transition. The electric dipole to magnetic dipole transition ratio (ED/MD), CIE colour coordinates and colour purity were determined to provide additional insights into the spectroscopic attributes of the obtained phosphors. In addition, the concentration quenching was also observed, and its mechanism was proposed based on theoretical calculations showing the multipolar interactions.

2.
BMC Microbiol ; 23(1): 193, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464289

RESUMO

BACKGROUND: Hydroxyapatites (HAp) are widely used as medical preparations for e.g., bone replacement or teeth implants. Incorporation of various substrates into HAp structures could enhance its biological properties, like biocompatibility or antimicrobial effects. Silver ions possess high antibacterial and antifungal activity and its application as HAp dopant might increase its clinical value. RESULTS: New silicate-substituted hydroxyapatites (HAp) doped with silver ions were synthesized via hydrothermal methods. The crystal structure of HAp was investigated by using the X-ray powder diffraction. Antifungal activity of silver ion-doped HAp (with 0.7 mol%, 1 mol% and 2 mol% of dopants) was tested against the yeast-like reference and clinical strains of Candida albicans, C. glabrata, C. tropicalis, Rhodotorula rubra, R. mucilaginosa, Cryptococcus neoformans and C. gattii. Spectrophotometric method was used to evaluate antifungal effect of HAp in SD medium. It was shown that already the lowest dopant (0.7 mol% of Ag+ ions) significantly reduced fungal growth at the concentration of 100 µg/mL. Increase in the dopant content and the concentration of HAp did not cause further growth inhibition. Moreover, there were some differences at the tolerance level to Ag+ ion-doped HAp among tested strains, suggesting strain-specific activity. CONCLUSIONS: Preformed studies confirm antimicrobial potential of hydroxyapatite doped with silver. New Ag+ ion-HAp material could be, after further studies, considered as medical agent with antifungal properties which lower the risk of a surgical-related infections.


Assuntos
Anti-Infecciosos , Durapatita , Durapatita/química , Durapatita/farmacologia , Antifúngicos/farmacologia , Prata/farmacologia , Prata/química , Hidroxiapatitas/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Íons
3.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686356

RESUMO

Silver phosphate and its composites have been attracting extensive interest as photocatalysts potentially effective against pathogenic microorganisms. The purpose of the present study was to investigate the mechanism of bactericidal action on cells of opportunistic pathogens. The Ag3PO4/P25 (AGP/P25) and Ag3PO4/HA (HA/AGP) powders were prepared via a co-precipitation method. Thereafter, their antimicrobial properties against Enterococcus faecalis, Staphylococcus epidermidis, and Staphylococcus aureus (clinical and reference strains) were analyzed in the dark and after exposure to visible light (VIS). The mechanism leading to cell death was investigated by the leakage of metabolites and potassium ions, oxidative stress, and ROS production. Morphological changes of the bacterial cells were visualized by transmission electron microscopy (TEM) and scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (SEM EDS) analysis. It has been shown that Ag3PO4-based composites are highly effective agents that can eradicate 100% of bacterial populations during the 60 min photocatalytic inactivation. Their action is mainly due to the production of hydroxyl radicals and photogenerated holes which lead to oxidative stress in cells. The strong affinity to the bacterial cell wall, as well as the well-known biocidal properties of silver itself, increase undoubtedly the antimicrobial potential of the Ag3PO4-based composites.


Assuntos
Parede Celular , Enterococcus faecalis , Morte Celular , Radical Hidroxila , Luz
4.
Curr Issues Mol Biol ; 44(12): 6229-6246, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36547086

RESUMO

Nanosized silicate-substituted hydroxyapatites, characterized by the general formula Ca9.8-x-nSrnZnx(PO4)6-y(SiO4)y(OH)2 (where: n = 0.2 [mol%]; x = 0.5-3.5 [mol%]; y = 4-5 [mol%]), co-doped with Zn2+ and Sr2+ ions, were synthesized with the help of a microwave-assisted hydrothermal technique. The structural properties were determined using XRD (X-ray powder diffraction) and Fourier-transformed infrared spectroscopy (FT-IR). The morphology, size and shape of biomaterials were detected using scanning electron microscopy techniques (SEM). The reference strains of Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa were used to assess bacterial survivability and the impact on biofilm formation in the presence of nanosilicate-substituted strontium-hydroxyapatites. Safety evaluation was also performed using the standard cytotoxicity test (MTT) and hemolysis assay. Moreover, the mutagenic potential of the materials was assessed (Ames test). The obtained results suggest the dose-dependent antibacterial activity of nanomaterials, especially observed for samples doped with 3.5 mol% Zn2+ ions. Moreover, the modification with five SiO4 groups enhanced the antibacterial effect; however, a rise in the toxicity was observed as well. No harmful activity was detected in the hemolysis assay as well as in the mutagenic assay (Ames test).

5.
Inorg Chem ; 61(31): 12237-12248, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35900272

RESUMO

In this study, solid-state solutions of yttrium orthovanadate-phosphate with varying concentrations of codopants (Eu3+, Bi3+) have been obtained via coprecipitation. An ionic radii mismatch between V5+ and P5+ substituents is manifested in broad XRD lines. The sharpening of the XRD lines is observed with increasing bismuth ions concentration in the Eu3+ codoped YV0.5P0.5O4 matrix. The difference in the number of the Stark components for the 5D0 → 7FJ transitions indicates changes in the lattice and a number of possible Eu3+ sites. A thorough, systematic spectroscopic analysis of YV0.5P0.5O4: x mol % Eu3+, y mol % Bi3+ was conducted at room temperature and 5 K. Metal-to-metal energy transfers occurring between Eu3+, V5+, and Bi3+ optically active ions have been investigated. Additionally, efficiency of the Bi3+-Eu3+ energy transfer (ET) was calculated.

6.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216060

RESUMO

A new combination of Toceranib (Toc; 5-[(5Z)-(5-Fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)methyl]-2,4-dimethyl-N-[2-(pyrrolidin-1-yl)ethyl]-1H-pyrrole-3-carboxamide) with nanohydroxyapatite (nHAp) was proposed as an antineoplastic drug delivery system. Its physicochemical properties were determined as crystallinity, grain size, morphology, zeta potential and hydrodynamic diameter as well as Toceranib release. The crystalline nanorods of nHAp were synthesised by the co-precipitation method, while the amorphous Toceranib was obtained by its conversion from the crystalline form during nHAp-Toc preparation. The surface interaction between both compounds was confirmed using Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS). The nHAp-Toc showed a slower and prolonged release of Toceranib. The release behaviour was affected by hydrodynamic size, surface interaction and the medium used (pH). The effectiveness of the proposed platform was tested by comparing the cytotoxicity of the drug combined with nHAp against the drug itself. The compounds were tested on NI-1 mastocytoma cells using the Alamar blue colorimetric technique. The obtained results suggest that the proposed platform shows high efficiency (the calculated IC50 is 4.29 nM), while maintaining the specificity of the drug alone. Performed analyses confirmed that nanohydroxyapatite is a prospective drug carrier and, when Toceranib-loaded, may be an idea worth developing with further research into therapeutic application in the treatment of canine mast cell tumour.


Assuntos
Doenças do Cão/tratamento farmacológico , Durapatita/farmacologia , Indóis/farmacologia , Mastocitoma/tratamento farmacológico , Nanopartículas/administração & dosagem , Pirróis/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cães , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Sinergismo Farmacológico , Inibidores de Proteínas Quinases/farmacologia
7.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163457

RESUMO

The main aim of our research was to investigate antiadhesive and antibiofilm properties of nanocrystalline apatites doped and co-doped with noble metal ions (Ag+, Au+, and Pd2+) against selected drug-resistant strains of Enterococcus faecalis and Staphylococcus aureus. The materials with the structure of apatite (hydroxyapatite, nHAp; hydroxy-chlor-apatites, OH-Cl-Ap) containing 1 mol% and 2 mol% of dopants and co-dopants were successfully obtained by the wet chemistry method. The majority of them contained an additional phase of metallic nanoparticles, in particular, AuNPs and PdNPs, which was confirmed by the XRPD, FTIR, UV-Vis, and SEM-EDS techniques. Extensive microbiological tests of the nanoapatites were carried out determining their MIC, MBC value, and FICI. The antiadhesive and antibiofilm properties of the tested nanoapatites were determined in detail with the use of fluorescence microscopy and computer image analysis. The results showed that almost all tested nanoapatites strongly inhibit adhesion and biofilm production of the tested bacterial strains. Biomaterials have not shown any significant cytotoxic effect on fibroblasts and even increased their survival when co-incubated with bacterial biofilms. Performed analyses confirmed that the nanoapatites doped and co-doped with noble metal ions are safe and excellent antiadhesive and antibiofilm biomaterials with potential use in the future in medical sectors.


Assuntos
Apatitas/farmacologia , Enterococcus faecalis/fisiologia , Ouro/química , Staphylococcus aureus Resistente à Meticilina/fisiologia , Paládio/química , Prata/química , Animais , Apatitas/química , Células 3T3 BALB , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Nanopartículas Metálicas/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Tamanho da Partícula
8.
Bioorg Chem ; 106: 104476, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33250206

RESUMO

Novel arylpiperazine-1,2-benzothiazine derivatives have been designed and synthesized as potential anti-inflammatory agents. Their structure and properties have been studied using spectroscopic techniques (1H NMR, 13C NMR, FT-IR), MS, elemental analyses, and single-crystal X-ray diffraction (SCXRD, for compound 7b). This study aimed to evaluate the inhibitory activity of new derivatives against both cyclooxygenase isoforms COX-1 and COX-2 due to the similarity of new compounds to oxicams drugs from the NSAIDs group. All new compounds were divided into two series - A and B - with a different linker between thiazine and piperazines nitrogens. Series A included the three-carbon aliphatic linker and series B - two-carbon with a carbonyl group. According to in vitro and molecular docking studies all new compounds exhibited cyclooxygenase inhibitory activity. The series of A compounds included COX-1 inhibitors only. In contrast, the B series showed inhibition of both COX-1 and COX-2, which suggested the importance of the acetoxy linker for COX-2 inhibition. Moreover, the most selective compound 7b, towards COX-2, was non-toxic for the normal human cell line (in concentration of 10 µM) comparable to reference drug meloxicam. Additionally, investigation of influence on model membranes confirmed the ability of the compound 7b to penetrate lipid bilayers which seemed to be important to the influence with membrane protein-cyclooxygenase.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Tiazinas/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Células Cultivadas , Cristalografia por Raios X , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiazinas/síntese química , Tiazinas/química
9.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803717

RESUMO

New fluconazole-loaded, 6-Anhydro-α-l-Galacto-ß-d-Galactan hydrogels incorporated with nanohydroxyapatite were prepared and their physicochemical features (XRD, X-ray Diffraction; SEM-EDS, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy; ATR-FTIR, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy), fluconazole release profiles and enzymatic degradation were determined. Antifungal activity of pure fluconazole was tested using Candida species (C. albicans, C. tropicalis, C. glabarata), Cryptococcus species (C. neoformans, C. gatti) and Rhodotorula species (R. mucilaginosa, R. rubra) reference strains and clinical isolates. Standard microdilution method was applied, and fluconazole concentrations of 2-250 µg/mL were tested. Moreover, biofilm production ability of tested isolates was tested on the polystyrene surface at 28 and 37 ± 0.5 °C and measured after crystal violet staining. Strains with the highest biofilm production ability were chosen for further analysis. Confocal microscopy photographs were taken after live/dead staining of fungal suspensions incubated with tested hydrogels (with and without fluconazole). Performed analyses confirmed that polymeric hydrogels are excellent drug carriers and, when fluconazole-loaded, they may be applied as the prevention of chronic wounds fungal infection.


Assuntos
Antifúngicos/farmacologia , Durapatita/química , Fluconazol/farmacologia , Galactanos/química , Nanopartículas/química , Cicatrização/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Doença Crônica , Fungos/efeitos dos fármacos , Hidrogéis/química , Cinética , Testes de Sensibilidade Microbiana , Muramidase/metabolismo , Nanopartículas/ultraestrutura , Plâncton/efeitos dos fármacos , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Difração de Raios X
10.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923239

RESUMO

Hydroxyapatite has been used in medicine for many years as a biomaterial or a cover for other biomaterials in orthopedics and dentistry. This study characterized the physicochemical properties (structure, particle size and morphology, surface properties) of Li+- and Li+/Eu3+-doped nanohydroxyapatite obtained using the wet chemistry method. The potential regenerative properties against neurite damage in cultures of neuron-like cells (SH-SY5Y and PC12 after differentiation) were also studied. The effect of nanohydroxyapatite (nHAp) on the induction of repair processes in cell cultures was assessed in tests of metabolic activity, the level of free oxygen radicals and nitric oxide, and the average length of neurites. The study showed that nanohydroxyapatite influences the increase in mitochondrial activity, which is correlated with the increase in the length of neurites. It has been shown that the doping of nanohydroxyapatite with Eu3+ ions enhances the antioxidant properties of the tested nanohydroxyapatite. These basic studies indicate its potential application in the treatment of neurite damage. These studies should be continued in primary neuronal cultures and then with in vivo models.


Assuntos
Materiais Biocompatíveis/farmacologia , Durapatita/farmacologia , Nanopartículas/administração & dosagem , Regeneração Nervosa , Neuroblastoma/tratamento farmacológico , Nervos Periféricos/citologia , Animais , Humanos , Técnicas In Vitro , Nanopartículas/química , Neuroblastoma/patologia , Células PC12 , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/patologia , Ratos , Propriedades de Superfície , Células Tumorais Cultivadas
11.
Molecules ; 25(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050306

RESUMO

In the present study, a nanoapatite-mediated delivery system for imatinib has been proposed. Nanohydroxyapatite (nHAp) was obtained by co-precipitation method, and its physicochemical properties in combination with imatinib (IM) were studied by means of XRPD (X-ray Powder Diffraction), SEM-EDS (Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy), FT-IR (Fourier-Transform Infrared Spectroscopy), absorption spectroscopy as well as DLS (Dynamic Light Scattering) techniques. The obtained hydroxyapatite was defined as nanosized rod-shaped particles with high crystallinity. The amorphous imatinib was obtained by conversion of its crystalline form. The beneficial effects of amorphous pharmaceutical agents have been manifested in the higher dissolution rate in body fluids improving their bioavailability. Imatinib-to-hydroxyapatite interactions on the surface were confirmed by SEM images as well as absorption and FT-IR spectroscopy. The cytotoxicity of the system was tested on NI-1, L929, and D17 cell lines. The effectiveness of imatinib was not affected by nHAp modification. The calculated IC50 values for drug-modified nHAp were similar to those for the drug itself. However, higher cytotoxicity was observed at higher concentrations of imatinib, in comparison with the drug alone.


Assuntos
Durapatita/química , Mesilato de Imatinib/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Difusão Dinâmica da Luz , Humanos , Microscopia de Força Atômica , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752040

RESUMO

The global concern related with growing number of bacterial pathogens, resistant to numerous antibiotics, prone scientific environment to search for new antimicrobials. Antiseptics appear to be suitable candidates as adjunctive agents to antibiotics or alternative local treatment option aiming to prevent and treat infections. 1,2-benzothiazines are considered one the most promising of them. In this research twenty 1,2-benzothiazine 1,1-dioxide derivatives were scrutinized with regard to their biological activity. Three of them are new. For evaluation of compounds' activity against microbial pathogens, disk diffusion method and serial microdilution method was applied. To establish the cytotoxicity profile of tested 1,2-benzothiazines 1,1-dioxides derivatives, the cytotoxicity assay using fibroblasts L292 was performed. Antimicrobial activity of all tested compounds against Gram-positive Staphylococcus aureus and Enterococcus faecalis strains was higher than antimicrobial activity of DMSO solvent, which possesses antimicrobial activity itself. Gram-negative P. aeruginosa, E. coli and K. pneumoniae have shown susceptibility only to compounds 3e, 7i and 7l. None of tested compounds was effective against C. albicans. Compound 6g has demonstrated the strongest antimicrobial potency (MIC = 0.00975 mg/mL) among compounds of series 6. Compounds of series 7, namely 7d, 7f, 7g had the lowest minimum inhibitory concentration (MIC). Compound 7f displayed also the lowest cytotoxic effect against fibroblast cell line among series 7 compounds. All tested derivatives displayed lower MIC against Gram-positive bacteria than commercially applied antiseptic, povidone iodine, which MIC value range for tested Gram-positive bacteria was 1.56-6.25 mg/mL.


Assuntos
Anti-Infecciosos/química , Óxidos/química , Tiazinas/química , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Candida albicans/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Fibroblastos/citologia , Fibroblastos/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Conformação Molecular , Relação Estrutura-Atividade , Tiazinas/síntese química , Tiazinas/farmacologia
13.
Bioorg Med Chem ; 27(8): 1619-1628, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30852078

RESUMO

Gastrotoxicity continues to be a major issue in therapy with nonsteroidal anti-inflammatory drugs (NSAIDs). Medicine is yet to develop absolutely safe analgesics. Numerous strategies are employed to discover new, safer NSAIDs, for example selective inhibition of cyclooxygenase-2, new molecular targets (e.g. microsomal prostaglandin E2 synthase-1), incorporation of cytoprotective compounds in the drug molecule or modification of the classic NSAIDs currently available on the market. The research presented in this paper is indicative of a current worldwide trend in this area of science, and is an example of the fourth strategy noted above. Two series of new arylpiperazine derivatives of the classic NSAID - piroxicam, were developed by conventional synthesis. The full range of compounds obtained proved to be between two and five times analgesically more potent than the reference drug and, most importantly, they did not show any ulcerogenic activity.


Assuntos
Analgésicos/química , Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Analgésicos/efeitos adversos , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Masculino , Camundongos , Modelos Moleculares , Piperazinas/efeitos adversos , Piroxicam/efeitos adversos , Piroxicam/análogos & derivados , Piroxicam/farmacologia , Ratos Wistar , Úlcera/induzido quimicamente
14.
Inorg Chem ; 56(18): 10914-10925, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28846398

RESUMO

In the present work, a precipitation method was employed to prepare nanosized YAsO4 doped with Eu3+ ions. The raw nanomaterials have been thermally treated in a temperature range between 500 and 900 °C for 3 h. The XRD analysis demonstrated that the powders were single-phase nanopowders with high crystallite dispersion. Our studies were focused on relating the luminescence properties of the Eu3+ dopant to the nanocrystallite (NC) size. The average NC size varied accordingly between 15 and 45 nm. We have found that the size effect is manifested mainly in the expansion of the cell volume and broadening of XRD peaks, as indicated by Rietveld analysis. Moreover, the emission and excitation spectra, although typical for Eu3+ ions, demonstrated some degree of variability with calcination temperatures and doping concentration. To explain these differences, a detailed analysis of luminescence spectra by the Judd-Ofelt theory has been performed.

15.
Inorg Chem ; 53(2): 943-51, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24392745

RESUMO

Interaction of lanthanum isopropoxide with molybdenum(VI) alkoxides in La/Mo ratios varying from 3:1 to 1:1 in acetophenon or allyl alcohol as solvents offers nanosized poorly crystalline products of complex composition, where the precipitation of Mo-rich ones is followed by the formation of La-rich ones with conservation of the reaction stoichiometry in total. Thermal treatment of the precipitates at temperatures over 700 °C leads to the formation of stoichiometric phases of the α- and ß-La2Mo2O9 compositions. Introduction of smaller Re(3+) cations such as Sm(3+) by doping favors stabilization of the La2-xRExMo2O9 phase with improved crystallinity even after lower-temperature thermal treatment. The doping is successful only when the Re(3+) (Sm(3+), Eu(3+), and Tb(3+)) is introduced as an alkoxide: application of Re(3+)(acac)3 as Re(3+) sources leads to materials free from Re(3+). The produced samples were characterized by XPD, TGA, SEM, and TEM studies as well as the luminescent properties for the Sm(3+)-doped phases.

16.
Biomater Adv ; 156: 213709, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039809

RESUMO

In the present study, biocompatible luminescent of nanosized fluorapatite doped with rubidium(I) (Rb+ ion) and europium(III) (Eu3+ ion) ions were synthesized via hydrothermal method. It was investigated the influence of co-doped Rb+ and Eu3+ ions on the structural, and morphological characteristics of the obtained fluorapatite materials. The characterization techniques utilized included: X-ray powder diffraction (XRPD), infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). Moreover, to establish the influence of the co-doped Rb+ and Eu3+ ions on the luminescence properties of the lanthanide ion, emission excitation, emission spectrum and luminescence decays were measured. This confirmed a distinct red emission originating from Eu3+ ions and an increased emission lifetime. To determine the biocompatibility of the obtained fluorapatite compounds, in vitro studies using normal dermal human fibroblasts were performed. The results of these studies clearly demonstrate the remarkable biocompatibility of our compounds. This discovery opens exciting prospects for the use of synthetic fluorapatites doped with Eu3+ and Rb+ ions in various biomedical contexts. In particular, these materials hold great promise for potential applications in regenerative engineering, but also serve as innovative and practical solutions as bone scaffolds and dental implants containing nano-fluorapatite. Further discussion of these properties can be found in this article, along with a discussion of their importance and potential in the field of biomedical applications. However, according to our pervious study and based on our current investigations but also based on available scientific records, it was proposed potential molecular mechanism of Rb+ ions in the process of osteoclastogenesis.


Assuntos
Európio , Nanoestruturas , Humanos , Európio/química , Rubídio , Espectroscopia de Infravermelho com Transformada de Fourier , Íons
17.
Int J Biol Macromol ; 271(Pt 2): 132665, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38810847

RESUMO

Vitamin B9, known as folic acid, and hemoglobin play an important biological role in the human body. This study was designed to investigate the nature of the complex through multispectroscopic methods at physiological conditions due to the lack of research on the binding interactions between folic acid and hemoglobin. Structural analysis showed that the interactions between the molecules are mainly hydrophobic with binding constant of 0.73 × 104 L/mol at 37 °C. The secondary structure of the protein was stable after the addition of folic acid with a 20-fold excess of ligand per mol protein. The stability effect of folic acid on hemoglobin was examined as a function of release of iron ions and determination of the level of phenanthroline-Fe2+ complex. The protective function of folic acid was observed at a concentration of 6.12 nmol/L, and the release of iron ions was lower than in the control probe.


Assuntos
Ácido Fólico , Hemoglobinas , Ferro , Hemoglobinas/química , Hemoglobinas/metabolismo , Ácido Fólico/química , Ácido Fólico/farmacologia , Ferro/química , Humanos , Estabilidade Proteica/efeitos dos fármacos , Ligação Proteica , Interações Hidrofóbicas e Hidrofílicas
18.
Gels ; 10(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38391429

RESUMO

The aim of the presented systematic review is to update the state of knowledge and relate the properties and composition of fluoride gels to their potential application. This article aims to explore the effect of fluoride gel application on changes in the properties of dental biomaterials and tooth tissues. The review includes articles assessing studies on the effects of fluoride gel on dental tissues and materials. Employing the PRISMA protocol, a meticulous search was conducted across the PubMed, Scopus, and Web of Science databases, utilizing keywords such as fluoride, gel, and properties. The publications were selected without limitation by the year of publication, and then Cohen's κ test was used to assess the agreement of the respondents. Exclusion criteria included non-English studies, opinion pieces, editorial papers, letters to the editor, review articles and meta-analyses, clinical reports, studies lacking full-text accessibility, and duplicates. The quality of the chosen papers was assessed by two independent reviewers. A total of 2385 were located in databases, of which only 17 met the inclusion criteria. All publications showed increased surface mineralization, and seven studies showed the effect of fluoride gel on the surface of dental tissues. Three articles stated a negative effect of fluoride gels on titanium and stainless steel alloys and glass ionomer fillings. The effects on shear bond strength and plaque deposition require further investigation because the study results are contradictory.

19.
J Funct Biomater ; 15(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38391898

RESUMO

This study aims to evaluate the influence of a nanohydroxyapatite layer applied to the surface of titanium or titanium alloy implants on the intricate process of osseointegration and its effect on osteoblast cell lines, compared to uncoated implants. Additionally, the investigation scrutinizes various modifications of the coating and their consequential effects on bone and cell line biocompatibility. On the specific date of November 2023, an exhaustive electronic search was conducted in esteemed databases such as PubMed, Web of Science, and Scopus, utilizing the meticulously chosen keywords ((titanium) AND ((osteoblasts) and hydroxyapatite)). Methodologically, the systematic review meticulously adhered to the PRISMA protocol. Initially, a total of 1739 studies underwent scrutiny, with the elimination of 741 duplicate records. A further 972 articles were excluded on account of their incongruence with the predefined subjects. The ultimate compilation embraced 26 studies, with a predominant focus on the effects of nanohydroxyapatite coating in isolation. However, a subset of nine papers delved into the nuanced realm of its modifiers, encompassing materials such as chitosan, collagen, silver particles, or gelatine. Across many of the selected studies, the application of nanohydroxyapatite coating exhibited a proclivity to enhance the osseointegration process. The modifications thereof showcased a positive influence on cell lines, manifesting in increased cellular spread or the attenuation of bacterial activity. In clinical applications, this augmentation potentially translates into heightened implant stability, thereby amplifying the overall procedural success rate. This, in turn, renders nanohydroxyapatite-coated implants a viable and potentially advantageous option in clinical scenarios where non-modified implants may not suffice.

20.
Biomater Sci ; 12(13): 3374-3388, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38787753

RESUMO

This study details the design, fabrication, clinical trials' evaluation, and analysis after the clinical application of 3D-printed bone reconstruction implants made of nHAp@PLDLLA [nanohydroxyapatite@poly(L-lactide-co-D,L-lactide)] biomaterial. The 3D-printed formulations have been tested as bone reconstruction Cranioimplants in 3 different medical cases, including frontal lobe, mandibular bone, and cleft palate reconstructions. Replacing one of the implants after 6 months provided a unique opportunity to evaluate the post-surgical implant obtained from a human patient. This allowed us to quantify physicochemical changes and develop a spatial map of osseointegration and material degradation kinetics as a function of specific locations. To the best of our knowledge, hydrolytic degradation and variability in the physicochemical and mechanical properties of the biomimetic, 3D-printed implants have not been quantified in the literature after permanent placement in the human body. Such analysis has revealed the constantly changing properties of the implant, which should be considered to optimize the design of patient-specific bone substitutes. Moreover, it has been proven that the obtained composition can produce biomimetic, bioresorbable and bone-forming alloplastic substitutes tailored to each patient, allowing for shorter surgery times and faster patient recovery than currently available methods.


Assuntos
Durapatita , Impressão Tridimensional , Humanos , Durapatita/química , Implantes Absorvíveis , Substitutos Ósseos/química , Crânio/cirurgia , Poliésteres/química , Masculino , Desenho de Prótese , Materiais Biocompatíveis/química , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA