Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 22(12): 2028-2038, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31515929

RESUMO

The relative influence of niche vs. neutral processes in ecosystem dynamics is an on-going debate, but the extent to which they structured the earliest animal communities is unknown. Some of the oldest known metazoan-dominated paleocommunities occur in Ediacaran age (~ 565 million years old) strata in Newfoundland, Canada and Charnwood Forest, UK. These comprise large and diverse populations of sessile organisms that are amenable to spatial point process analyses, enabling inference of the most likely underlying niche or neutral processes governing community structure. We mapped seven Ediacaran paleocommunities using LiDAR, photogrammetry and a laser line probe. We found that neutral processes dominate these paleocommunities, with niche processes exerting limited influence, in contrast with the niche-dominated dynamics of modern marine ecosystems. The dominance of neutral processes suggests that early metazoan diversification may not have been driven by systematic adaptations to the local environment, but instead may have resulted from stochastic demographic differences.


Assuntos
Ecossistema , Florestas , Animais , Canadá
2.
Proc Natl Acad Sci U S A ; 109(26): 10218-23, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22615359

RESUMO

Melanin is a ubiquitous biological pigment found in bacteria, fungi, plants, and animals. It has a diverse range of ecological and biochemical functions, including display, evasion, photoprotection, detoxification, and metal scavenging. To date, evidence of melanin in fossil organisms has relied entirely on indirect morphological and chemical analyses. Here, we apply direct chemical techniques to categorically demonstrate the preservation of eumelanin in two > 160 Ma Jurassic cephalopod ink sacs and to confirm its chemical similarity to the ink of the modern cephalopod, Sepia officinalis. Identification and characterization of degradation-resistant melanin may provide insights into its diverse roles in ancient organisms.


Assuntos
Fósseis , Melaninas/química , Pigmentos Biológicos/química , Espectroscopia de Ressonância de Spin Eletrônica , Cromatografia Gasosa-Espectrometria de Massas , Microscopia Eletrônica de Varredura
3.
Sci Adv ; 7(30)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34301594

RESUMO

Molecular timescales estimate that early animal lineages diverged tens of millions of years before their earliest unequivocal fossil evidence. The Ediacaran macrobiota (~574 to 538 million years ago) are largely eschewed from this debate, primarily due to their extreme phylogenetic uncertainty, but remain germane. We characterize the development of Charnia masoni and establish the affinity of rangeomorphs, among the oldest and most enigmatic components of the Ediacaran macrobiota. We provide the first direct evidence for the internal interconnected nature of rangeomorphs and show that Charnia was constructed of repeated branches that derived successively from pre-existing branches. We find homology and rationalize morphogenesis between disparate rangeomorph taxa, before producing a phylogenetic analysis, resolving Charnia as a stem-eumetazoan and expanding the anatomical disparity of that group to include a long-extinct bodyplan. These data bring competing records of early animal evolution into closer agreement, reformulating our understanding of the evolutionary emergence of animal bodyplans.

4.
Sci Rep ; 11(1): 19109, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580353

RESUMO

Understanding the Earth's climate system during past periods of high atmospheric CO2 is crucial for forecasting climate change under anthropogenically-elevated CO2. The Mesozoic Era is believed to have coincided with a long-term Greenhouse climate, and many of our temperature reconstructions come from stable isotopes of marine biotic calcite, in particular from belemnites, an extinct group of molluscs with carbonate hard-parts. Yet, temperatures reconstructed from the oxygen isotope composition of belemnites are consistently colder than those derived from other temperature proxies, leading to large uncertainties around Mesozoic sea temperatures. Here we apply clumped isotope palaeothermometry to two distinct carbonate phases from exceptionally well-preserved belemnites in order to constrain their living habitat, and improve temperature reconstructions based on stable oxygen isotopes. We show that belemnites precipitated both aragonite and calcite in warm, open ocean surface waters, and demonstrate how previous low estimates of belemnite calcification temperatures has led to widespread underestimation of Mesozoic sea temperatures by ca. 12 °C, raising estimates of some of the lowest temperature estimates for the Jurassic period to values which approach modern mid-latitude sea surface temperatures. Our findings enable accurate recalculation of global Mesozoic belemnite temperatures, and will thus improve our understanding of Greenhouse climate dynamics.

5.
Pap Palaeontol ; 5(1): 157-176, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31007942

RESUMO

The Ediacaran macrofossil Charnia masoni Ford is perhaps the most iconic member of the Rangeomorpha: a group of seemingly sessile, frondose organisms that dominates late Ediacaran benthic, deep-marine fossil assemblages. Despite C. masoni exhibiting broad palaeogeographical and stratigraphical ranges, there have been few morphological studies that consider the variation observed among populations of specimens derived from multiple global localities. We present an analysis of C. masoni that evaluates specimens from the UK, Canada and Russia, representing the largest morphological study of this taxon to date. We describe substantial morphological variation within C. masoni and present a new morphological model for this species that has significant implications both for interpretation of rangeomorph architecture, and potentially for existing taxonomic schemes. Previous reconstructions of Charnia include assumptions regarding the presence of structures seen in other rangeomorphs (e.g. an internal stalk) and of homogeneity in higher order branch morphology; observations that are not borne out by our investigations. We describe variation in the morphology of third and fourth order branches, as well as variation in gross structure near the base of the frond. The diagnosis of Charnia masoni is emended to take account of these new features. These findings highlight the need for large-scale analyses of rangeomorph morphology in order to better understand the biology of this long-enigmatic group.

6.
Nat Ecol Evol ; 3(4): 528-538, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858589

RESUMO

The 'Cambrian Explosion' describes the rapid increase in animal diversity and abundance, as manifest in the fossil record, between ~540 and 520 million years ago (Ma). This event, however, is nested within a far more ancient record of macrofossils extending at least into the late Ediacaran at ~571 Ma. The evolutionary events documented during the Ediacaran-Cambrian interval coincide with geochemical evidence for the modernisation of Earth's biogeochemical cycles. Holistic integration of fossil and geochemical records leads us to challenge the notion that the Ediacaran and Cambrian worlds were markedly distinct, and places biotic and environmental change within a longer-term narrative. We propose that the evolution of metazoans may have been facilitated by a series of dynamic and global changes in redox conditions and nutrient supply, which, potentially together with biotic feedbacks, enabled turnover events that sustained multiple phases of radiation. We argue that early metazoan diversification should be recast as a series of successive, transitional radiations that extended from the late Ediacaran and continued through the early Palaeozoic. We conclude that while the Cambrian Explosion represents a radiation of crown-group bilaterians, it was simply one phase amongst several metazoan radiations, some older and some younger.


Assuntos
Biodiversidade , Evolução Biológica , Fósseis , Animais , Biota
7.
Nat Ecol Evol ; 3(5): 858, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30979959

RESUMO

In the version of this article initially published, the reference "Mitchell, E. G., & Kenchington, C. G. The utility of height for the Ediacaran organisms of Mistaken Point. Nat. Ecol. Evol. 2, 1218-1222 (2018)." was missing. A callout to the reference should have been placed at the end of this sentence: "For biotic replacement to occur, taxa must be both spatially collocated and have similar resource requirements, yet spatial analyses of contemporary communities find only very limited instances of resource competition." The reference has been added to the list, and the error has been corrected in the PDF and HTML versions of the article.

8.
Proc Biol Sci ; 275(1650): 2449-54, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18647723

RESUMO

A newly discovered Konservat-Lagerstätte from the Middle Miocene of the western Olympus Range, Dry Valleys, Antarctica, yields cypridoidean ostracods complete with preserved body and appendages. This is the first record of three-dimensionally fossilized animal soft tissues from the continent. The ostracods are preserved in goethite, secondary after pyrite, representing a novel mode of exceptional preservation. They signal a high-latitude (greater than 77 degrees south) lake setting (Palaeolake Boreas) viable for benthic animal colonization prior to 14 Myr ago. Their presence supports the notion of warmer, tundra-like environmental conditions persisting in the Dry Valleys until the Middle Miocene.


Assuntos
Crustáceos/ultraestrutura , Fósseis , Animais , Regiões Antárticas , Meio Ambiente , Microscopia Eletrônica de Varredura , Paleontologia
9.
Curr Biol ; 28(20): 3330-3336.e2, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30293718

RESUMO

The first known diverse, complex, macroscopic benthic marine ecosystems (late Ediacaran, ca. 571-541 Ma) were dominated by the Rangeomorpha, an enigmatic group of extinct frondose eukaryotes that are candidate early metazoans [1, 2]. The group is characterized by a self-similar branching architecture that was most likely optimized for exchange, but nearly every other aspect of their biology is contentious [2-4]. We report locally enhanced, aberrant growth ("eccentric branching") in a stalked, multifoliate rangeomorph-Hylaecullulus fordi n. gen., n. sp.-from Charnwood Forest (UK), confirming the presence of true biological modularity within the group. Random branches achieve unusually large proportions and mimic the architecture of their parent branch, rather than that of their neighbors (the norm). Their locations indicate exceptional growth at existing loci, rather than insertion at new sites. Analogous overcompensatory branching in extant modular organisms requires the capacity to orchestrate growth at specific sites and occurs most frequently in response to damage or environmental stress, allowing regeneration toward optimum morphology (e.g., [5-7]). Its presence in rangeomorphs indicates a hitherto unappreciated level of control to their growth plan, a previously unrecognized form of morphological plasticity within the group, and an ability to actively respond to external physical stimuli. The trait would have afforded rangeomorphs resilience to fouling and abrasion, partially accounting for their wide environmental tolerance, and may have pre-adapted them to withstand predation, weakening this argument for their extinction. Our findings highlight that multiple, phylogenetically disparate clades first achieved large size through modularity.


Assuntos
Adaptação Biológica , Evolução Biológica , Fósseis/anatomia & histologia , Invertebrados/anatomia & histologia , Invertebrados/crescimento & desenvolvimento , Animais , Inglaterra , Filogenia
10.
Sci Adv ; 4(5): eaar5690, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29750198

RESUMO

The oceans of the early Cambrian (~541 to 509 million years ago) were the setting for a marked diversification of animal life. However, sea temperatures-a key component of the early Cambrian marine environment-remain unconstrained, in part because of a substantial time gap in the stable oxygen isotope (δ18O) record before the evolution of euconodonts. We show that previously overlooked sources of fossil biogenic phosphate have the potential to fill this gap. Pristine phosphatic microfossils from the Comley Limestones, UK, yield a robust δ18O signature, suggesting sea surface temperatures of 20° to 25°C at high southern paleolatitudes (~65°S to 70°S) between ~514 and 509 million years ago. These sea temperatures are consistent with the distribution of coeval evaporite and calcrete deposits, peak continental weathering rates, and also our climate model simulations for this interval. Our results support an early Cambrian greenhouse climate comparable to those of the late Mesozoic and early Cenozoic, offering a framework for exploring the interplay between biotic and environmental controls on Cambrian animal diversification.


Assuntos
Clima , Efeito Estufa , Biodiversidade , Ecossistema , Fósseis , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , História Antiga , Oceanos e Mares , Isótopos de Oxigênio/análise , Paleontologia , Temperatura
11.
J Phys Chem Lett ; 4(11): 1924-1927, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23847720

RESUMO

Melanins are biological pigments found throughout the animal kingdom that have many diverse functions. Pump-probe imaging can differentiate the two kinds of melanins found in human skin, eumelanin and pheomelanin, the distributions of which are relevant to the diagnosis of melanoma. The long-term stability of the melanin pump-probe signal is central to using this technology to analyze melanin distributions in archived tissue samples to improve diagnostic procedures. This report shows that most of the pump-probe signal from eumelanin derived from a Jurassic cephalopod is essentially identical to that of eumelanin extracted from its modern counterpart, Sepia officinalis. However, additional classes of eumelanin signals found in the fossil reveal that the pump-probe signature is sensitive to iron content, which could be a valuable tool for pathologists who cannot otherwise know the microscopic distributions of iron in melanins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA