Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 5(4): 1117-28, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26609621

RESUMO

HIV-1 protease performs a vital step in the propagation of the HIV virus and is therefore an important drug target in the treatment of AIDS. It consists of a homodimer, with access to the active site limited by two protein flaps. NMR studies have identified two time scales of motions that occur in these flaps, and it is thought that the slower of these is responsible for a conformational change that makes the protein ligand-accessible. This motion occurs on a time scale outside that achievable using traditional molecular dynamics simulations. Reversible Digitally Filtered Molecular Dynamics (RDFMD) is a method that amplifies low frequency motions associated with conformational change and has recently been applied to, among others, E. coli dihydrofolate reductase, inducing a conformational change between known crystal structures. In this paper, the conformational motions of HIV-1 protease produced during MD and RDFMD simulations are presented, including movement between the known semiopen and closed conformations, and the opening and closing of the protein flaps.

2.
J Chem Theory Comput ; 1(1): 24-35, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26641112

RESUMO

Reversible Digitally Filtered Molecular Dynamics (RDFMD) is a method of amplifying or suppressing motions in a molecular dynamics simulation, through the application of a digital filter to the simulation velocities. RDFMD and its derivatives have been previously used to promote conformational motions in liquid-phase butane, the Syrian hamster prion protein, alanine dipeptide, and the pentapeptide, YPGDV. The RDFMD method has associated with it a number of parameters that require specification to optimize the desired response. In this paper methods for the systematic analysis of these parameters are presented and applied to YPGDV with the specific emphasis of ensuring a gentle and progressive method that produces maximum conformation change from the energy put into the system. The portability of the new parameter set is then shown with an application to the M20 loop of E-coli dihydrofolate reductase. A conformational change is induced from a closed to an open structure similar to that seen in the DHFR-NADP(+) complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA