RESUMO
Small-particle analysis is a highly promising emerging forensic tool for analysis of interdicted special nuclear materials. Integration of microstructural, morphological, compositional, and molecular impurity signatures could provide significant advancements in forensic capabilities. We have applied rapid, high-sensitivity, hard X-ray synchrotron chemical imaging to analyze impurity signatures in two differently fabricated fuel pellets from the 5th Collaborative Materials Exercise (CMX5) of the IAEA Nuclear Forensics International Working Group. The spatial distributions, chemical compositions, and morphological and molecular characteristics of impurities were evaluated using X-ray absorption near-edge structure (XANES) and X-ray fluorescence chemical imaging to discover principal impurities, their granularity, particle sizes, modes of occurrence (distinct grains vs incorporation in the UO2 lattice), and sources and mechanisms of incorporation. Differences in UO2+x stoichiometry were detected at the microscale in nominally identical UO2 ceramics (CMX5-A and CMX5-B), implying the presence of multiple UO2 host phases with characteristic microstructures and feedstock compositions. Al, Fe, Ni, W, and Zr impurities and integrated impurity signature analysis identified distinctly different pellet synthesis and processing methods. For example, two different Al, W, and Zr populations in the CMX5-B sample indicated a more complex processing history than the CMX5-A sample. K-edge XANES measurements reveal both metallic and oxide forms of Fe and Ni but with different proportions between each sample. Altogether, these observations suggest multiple sources of impurities, including fabrication (e.g., force-sieving) and feedstock (mineral oxides). This study demonstrates the potential of synchrotron techniques to integrate different signatures across length scales (angstrom to micrometer) to detect and differentiate between contrasting UO2 fuel fabrication techniques.
RESUMO
Evaluating the nature of chemical bonding for actinide elements represents one of the most important and long-standing problems in actinide science. We directly address this challenge and contribute a Cl K-edge X-ray absorption spectroscopy and relativistic density functional theory study that quantitatively evaluates An-Cl covalency in AnCl62- (AnIV = Th, U, Np, Pu). The results showed significant mixing between Cl 3p- and AnIV 5f- and 6d-orbitals (t1u*/t2u* and t2 g*/eg *), with the 6d-orbitals showing more pronounced covalent bonding than the 5f-orbitals. Moving from Th to U, Np, and Pu markedly changed the amount of M-Cl orbital mixing, such that AnIV 6d - and Cl 3p-mixing decreased and metal 5f - and Cl 3p-orbital mixing increased across this series.
RESUMO
Although several publications report on the electronic structure of the neptunyl ion, experimental measurements to detail the photophysical dynamics of this open-shell actinyl system are limited in number. Time-resolved photoluminescence has been a useful experimental approach for understanding photophysical dynamics and relaxation pathways of a variety of other molecular and ionic systems, including gaseous plutonium hexafluoride and solid-state uranyl compounds. Here, we investigate time-resolved photoluminescence emission of the 5f1 neptunyl tetrachloride ([Np(VI)O2Cl4]2-) dianion following visible excitation. Photoemission of the lowest energy neptunyl ligand-to-metal charge-transfer (LMCT) transitions to both the ground and first electronically excited states is observed. Analyses of the decay lifetimes of the excited states suggest different relaxation pathways as a function of excitation energy. Vibronic progressions associated with the Np-oxo symmetric stretching mode are measured in emission spectra, and the energies from these progressions are compared with energies of vibronic progressions associated with the excitation spectra of [Np(VI)O2Cl4]2-. This study expands our understanding of this open-shell actinyl system beyond identification of excited states, allowing characterization of photophysical properties and evidence for the electronic character of the ground state, and suggests that this approach may be applicable to more complex actinide systems.
RESUMO
Covalency in Ln-Cl bonds of Oh-LnCl6(x-) (x = 3 for Ln = Ce(III), Nd(III), Sm(III), Eu(III), Gd(III); x = 2 for Ln = Ce(IV)) anions has been investigated, primarily using Cl K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT); however, Ce L3,2-edge and M5,4-edge XAS were also used to characterize CeCl6(x-) (x = 2, 3). The M5,4-edge XAS spectra were modeled using configuration interaction calculations. The results were evaluated as a function of (1) the lanthanide (Ln) metal identity, which was varied across the series from Ce to Gd, and (2) the Ln oxidation state (when practical, i.e., formally Ce(III) and Ce(IV)). Pronounced mixing between the Cl 3p- and Ln 5d-orbitals (t2g* and eg*) was observed. Experimental results indicated that Ln 5d-orbital mixing decreased when moving across the lanthanide series. In contrast, oxidizing Ce(III) to Ce(IV) had little effect on Cl 3p and Ce 5d-orbital mixing. For LnCl6(3-) (formally Ln(III)), the 4f-orbitals participated only marginally in covalent bonding, which was consistent with historical descriptions. Surprisingly, there was a marked increase in Cl 3p- and Ce(IV) 4f-orbital mixing (t1u* + t2u*) in CeCl6(2-). This unexpected 4f- and 5d-orbital participation in covalent bonding is presented in the context of recent studies on both tetravalent transition metal and actinide hexahalides, MCl6(2-) (M = Ti, Zr, Hf, U).
RESUMO
Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In this study, a high-purity α-U3O8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2-3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. Signatures measured from the α-U3O8 sample indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. The absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production. LA-UR-15-21495.
RESUMO
A-type tri-lacunary heteropolyoxotungstate anions (e.g., [PW9O34](9-), [AsW9O34](9-), [SiW9O34](10-), and [GeW9O34](10-)) are multidentate oxygen donor ligands that readily form sandwich complexes with actinyl cations ({UO2}(2+), {NpO2}(+), {NpO2}(2+), and {PuO2}(2+)) in near-neutral/slightly alkaline aqueous solutions. Two or three actinyl cations are sandwiched between two tri-lacunary anions, with additional cations (Na(+), K(+), or NH4(+)) also often held within the cluster. Studies thus far have indicated that it is these additional +1 cations, rather than the specific actinyl cation, that direct the structural variation in the complexes formed. We now report the structural characterization of the neptunyl(VI) cluster complex (NH4)13[Na(NpO2)2(A-α-PW9O34)2]·12H2O. The anion in this complex, [Na(NpO2)2(PW9O34)2](13-), contains one Na(+) cation and two {NpO2}(2+) cations held between two [PW9O34](9-) anions, with an additional partial occupancy NH4(+) or {NpO2}(2+) cation also present. In the analogous uranium(VI) system, under similar reaction conditions that include an excess of NH4Cl in the parent solution, it was previously shown that [(NH4)2(U(VI)O2)2(A-PW9O34)2](12-) is the dominant species in both solution and the crystallized salt. Spectroscopic studies provide further proof of differences in the observed chemistry for the {NpO2}(2+)/[PW9O34](9-) and {UO2}(2+)/[PW9O34](9-) systems, both in solution and in solid state complexes crystallized from comparable salt solutions. This work reveals that varying the actinide element (Np vs U) can indeed measurably impact structure and complex stability in the cluster chemistry of actinyl(VI) cations with A-type tri-lacunary heteropolyoxotungstate anions.
RESUMO
The speciation of U and Pu in soil and concrete from Rocky Flats and in particles from soils from Chernobyl, Hanford, Los Alamos, and McGuire Air Force Base and bottom sediments from Mayak was determined by a combination of X-ray absorption fine structure (XAFS) spectroscopy and X-ray fluorescence (XRF) element maps. These experiments identify four types of speciation that sometimes may and other times do not exhibit an association with the source terms and histories of these samples: relatively well ordered PuO2+x and UO2+x that had equilibrated with O2 and H2O under both ambient conditions and in fires or explosions; instances of small, isolated particles of U as UO2+x, U3O8, and U(VI) species coexisting in close proximity after decades in the environment; alteration phases of uranyl with other elements including ones that would not have come from soils; and mononuclear Pu-O species and novel PuO2+x-type compounds incorporating additional elements that may have occurred because the Pu was exposed to extreme chemical conditions such as acidic solutions released directly into soil or concrete. Our results therefore directly demonstrate instances of novel complexity in the Å and µm-scale chemical speciation and reactivity of U and Pu in their initial formation and after environmental exposure as well as occasions of unexpected behavior in the reaction pathways over short geological but significant sociological times. They also show that incorporating the actual disposal and site conditions and resultant novel materials such as those reported here may be necessary to develop the most accurate predictive models for Pu and U in the environment.
Assuntos
Plutônio/análise , Poluentes Radioativos do Solo/análise , Urânio/análise , Acidente Nuclear de Chernobyl , Colorado , New Jersey , New Mexico , Plutônio/química , Federação Russa , Espectrometria por Raios X , Ucrânia , Urânio/química , WashingtonRESUMO
Synthetic routes to salts containing uranium bis-imido tetrahalide anions [U(NR)(2)X(4)](2-) (X = Cl(-), Br(-)) and non-coordinating NEt(4)(+) and PPh(4)(+) countercations are reported. In general, these compounds can be prepared from U(NR)(2)I(2)(THF)(x) (x = 2 and R = (t)Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl(-), the [U(NMe)(2)](2+) cation also reacts with Br(-) to form stable [NEt(4)](2)[U(NMe)(2)Br(4)] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO(2)](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh(4)](2)[U(N(t)Bu)(2)Cl(4)] and [PPh(4)](2)[UO(2)Cl(4)]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.
Assuntos
Cloro/química , Imidas/química , Compostos Organometálicos/química , Urânio/química , Modelos Moleculares , Compostos Organometálicos/síntese química , Teoria Quântica , Espectroscopia por Absorção de Raios XRESUMO
Chlorine K-edge X-ray absorption spectroscopy (XAS) and ground-state and time-dependent hybrid density functional theory (DFT) were used to probe the electronic structures of O(h)-MCl(6)(2-) (M = Ti, Zr, Hf, U) and C(4v)-UOCl(5)(-), and to determine the relative contributions of valence 3d, 4d, 5d, 6d, and 5f orbitals in M-Cl bonding. Spectral interpretations were guided by time-dependent DFT calculated transition energies and oscillator strengths, which agree well with the experimental XAS spectra. The data provide new spectroscopic evidence for the involvement of both 5f and 6d orbitals in actinide-ligand bonding in UCl(6)(2-). For the MCl(6)(2-), where transitions into d orbitals of t(2g) symmetry are spectroscopically resolved for all four complexes, the experimentally determined Cl 3p character per M-Cl bond increases from 8.3(4)% (TiCl(6)(2-)) to 10.3(5)% (ZrCl(6)(2-)), 12(1)% (HfCl(6)(2-)), and 18(1)% (UCl(6)(2-)). Chlorine K-edge XAS spectra of UOCl(5)(-) provide additional insights into the transition assignments by lowering the symmetry to C(4v), where five pre-edge transitions into both 5f and 6d orbitals are observed. For UCl(6)(2-), the XAS data suggest that orbital mixing associated with the U 5f orbitals is considerably lower than that of the U 6d orbitals. For both UCl(6)(2-) and UOCl(5)(-), the ground-state DFT calculations predict a larger 5f contribution to bonding than is determined experimentally. These findings are discussed in the context of conventional theories of covalent bonding for d- and f-block metal complexes.
RESUMO
The low-lying electronic transitions of the neptunyl (NpO(2)(2+)) ion are characterized as either charge transfer (CT) or intra- 5f. Comparison of these classes of electronic transitions reveals significantly different photophysical properties, especially in vibronic coupling. An empirical model developed for analyses of uranyl CT vibronic transitions is used here to simulate the absorption (excitation) spectra of neptunyl in two compounds of different chemical compositions and structural symmetries. Analyses reveal that CT vibronic coupling in neptunyl has the same characteristics as that in typical uranyl analogues. The primary profile of the CT spectra is similar for neptunyl respectively with respect to chloride- and oxide-neptunium bonding interactions. On the other hand, vibronic coupling to the CT transitions is significantly different from that of f-f transitions, even within a given neptunyl compound. Electronic energy levels, vibronic coupling strength, and frequencies of various vibration modes were evaluated for transitions to the excited states of different origins in the region from 8000 cm(-1) to 21000 cm(-1) for two neptunyl compounds.
RESUMO
Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO(4)(1-) and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO(4)(1-), TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t(2) molecular orbitals that result from Re 5d and O 2p covalent mixing in T(d) symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO(4) may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies.
RESUMO
Changes in chemical speciation of uranium oxides following storage under varied conditions of temperature and relative humidity are valuable for characterizing material provenance. In this study, subsamples of high purity α-UO3 were stored under four sets of controlled conditions of temperature and relative humidity over several years, and then measured periodically for chemical speciation. Powder X-ray diffraction (XRD) analysis and extended X-ray absorption fine structure spectroscopy confirm hydration of α-UO3 to a schoepite-like end product following storage under each of the varied storage conditions, but the species formed during exposure to the lower relative humidity and lower temperature condition follows different trends from those formed under the other three storage conditions (high relative humidity with high or low temperatures, and low relative humidity with a high temperature). Thermogravimetry coupled with XRD analysis was carried out to distinguish desorption pathways of water from the hydrated end products. Density functional theory calculations discern changes in the structure of α-UO3 following incorporation of 1, 2 or 3 H2O molecules or 1, 2 or 3 OH groups into the orthorhombic lattice, revealing differences in lattice constants, U-O bond lengths, and U-U distances. The collective results from this analysis are in contrast to analogous studies that report that U3O8 is oxidized and hydrated in air during storage under high relative humidity conditions.
RESUMO
We describe the use of Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT) to probe the electronic structure and determine the degree of orbital mixing in M-Cl bonds for (C(5)Me(5))(2)MCl(2) (M = Ti, 1; Zr, 2; Hf, 3; Th, 4; U, 5), where we can directly compare a class of structurally similar compounds for d- and f-elements. Pre-edge features in the Cl K-edge XAS data for the group IV transition-metals 1-3 provide direct evidence of covalent M-Cl orbital mixing. The amount of Cl 3p character was experimentally determined to be 25%, 23%, and 22% per M-Cl bond for 1-3, respectively. For actinides, we find a pre-edge shoulder for 4 (Th) and distinct and weak pre-edge features for U, 5. The amount of Cl 3p character was determined to be 9% for 5, and we were unable to make an experimental determination for 4. Using hybrid DFT calculations with relativistic effective core potentials, the electronic structures of 1-5 were calculated and used as a guide to interpret the experimental Cl K-edge XAS data. For transition-metal compounds 1-3, the pre-edge features arise due to transitions from Cl 1s electrons into the 3d-, 4d-, and 5d-orbitals, with assignments provided in the text. For Th, 4, we find that 5f- and 6d-orbitals are nearly degenerate and give rise to a single pre-edge shoulder in the XAS. For U, 5, we find the 5f- and 6d-orbitals fall into two distinct energy groupings, and Cl K-edge XAS data are interpreted in terms of Cl 1s transitions into both 5f- and 6d-orbitals. Time-dependent DFT was used to calculate the energies and intensities of Cl 1s transitions into empty metal-based orbitals containing Cl 3p character and provide simulated Cl K-edge XAS spectra for 1-4. For 5, which has two unpaired 5f electrons, simulated spectra were obtained from transition dipole calculations using ground-state Kohn-Sham orbitals. To the best of our knowledge, this represents the first application of Cl K-edge XAS to actinide systems. Overall, this study allows trends in orbital mixing within a well-characterized structural motif to be identified and compared between transition-metals and actinide elements. These results show that the orbital mixing for the d-block compounds slightly decreases in covalency with increasing principal quantum number, in the order Ti > Zr approximately = Hf, and that uranium displays approximately half the covalent orbital mixing of transition elements.
RESUMO
We report the first example of photoluminescence from electronically excited states of the plutonyl ion. Discrete emission transitions were measured between 6000 and 10,200 cm(-1) from crystalline Cs2U(Pu)O2Cl4 cooled to 75 K following pulsed laser excitation at 628 nm. An excitation spectrum in the region of 15,000-16,500 cm(-1) is compared with 4.2 K plane-polarized absorption spectra reported by Gorshkov and Mashirov. Analysis of excited-state lifetime data suggests multiple relaxation pathways in the electronic structure of PuO2Cl4(2-).
RESUMO
The anion of the title complex, Cs(2)[PuCl(4)O(2)], adopts a pseudo-octa-hedral geometry (2/m crystallographic site symmetry) with two plutonyl oxide ligands in axial sites and four chloride ligands occupying the equatorial plane. Charge balance is maintained by two caesium cations per tetra-chlorido-dioxido-plutonate(VI) anion. Principal bond lengths include Pu-O = 1.752â (3)â Å and Pu-Cl = 2.6648â (8)â Å.
RESUMO
For 3-5d transition-metal ions, the (C5R5)2MCl2 (R = H, Me for M = Ti, Zr, Hf) bent metallocenes represent a series of compounds that have been central in the development of organometallic chemistry and homogeneous catalysis. Here, we evaluate how changes in the principal quantum number for the group IV (C5H5)2MCl2 (M = Ti, Zr, Hf; 1- 3, respectively) complexes affects the covalency of M-Cl bonds through application of Cl K-edge X-ray Absorption Spectroscopy (XAS). Spectra were recorded on solid samples dispersed as a thin film and encapsulated in polystyrene matrices to reliably minimize problems associated with X-ray self-absorption. The data show that XAS pre-edge intensities can be quantitatively reproduced when analytes are encapsulated in polystyrene. Cl K-edge XAS data show that covalency in M-Cl bonding changes in the order Ti > Zr > Hf and demonstrates that covalency slightly decreases with increasing principal quantum number in 1-3. The percent Cl 3p character was experimentally determined to be 26, 23, and 18% per M-Cl bond in the thin-film samples for 1-3 respectively and was indistinguishable from the polystyrene samples, which analyzed as 25, 25, and 19% for 1-3, respectively. To aid in interpretation of Cl K-edge XAS, 1-3 were also analyzed by ground-state and time-dependent density functional theory (TD-DFT) calculations. The calculated spectra and percent chlorine character are in close agreement with the experimental observations, and show 20, 18, and 17% Cl 3p character per M-Cl bond for 1-3, respectively. Polystyrene matrix encapsulation affords a convenient method to safely contain radioactive samples to extend our studies to include actinide elements, where both 5f and 6d orbitals are expected to play a role in M-Cl bonding and where transition assignments must rely on accurate theoretical calculations.
RESUMO
A series of uranyl aryloxide complexes has been prepared via metathesis reactions between [UO(2)Cl(2)(THF)(2)](2) and di-ortho-substituted phenoxides. Reaction of 4 equiv of KO-2,6-(t)()Bu(2)C(6)H(3) with [UO(2)Cl(2)(THF)(2)](2) in THF produces the dark red uranyl compound, UO(2)(O-2,6-(t)()Bu(2)C(6)H(3))(2)(THF)(2).THF, 1. Single-crystal X-ray diffraction analysis of 1 reveals a monomer in which the uranium is coordinated in a pseudooctahedral fashion by two apical oxo groups, two cis-aryloxides, and two THF ligands. A similar product is prepared by reaction of KO-2,6-Ph(2)C(6)H(3) with [UO(2)Cl(2)(THF)(2)](2) in THF. Single-crystal X-ray diffraction analysis of this compound reveals it to be the trans-monomer UO(2)(O-2,6-Ph(2)C(6)H(3))(2)(THF)(2), 2. Dimeric structures result from the reactions of [UO(2)Cl(2)(THF)(2)](2) with less sterically imposing aryloxide salts, KO-2,6-Cl(2)C(6)H(3) or KO-2,6-Me(2)C(6)H(3). Single-crystal X-ray diffraction analyses of [UO(2)(O-2,6-Cl(2)C(6)H(3))(2)(THF)(2)](2), 3, and [UO(2)Cl(O-2,6-Me(2)C(6)H(3))(THF)(2)](2), 4, reveal similar structures in which each U atom is coordinated by seven ligands in a pseudopentagonal bipyramidal fashion. Coordinated to each uranium are two apical oxo groups and five equatorial ligands (3, one terminal phenoxide, two bridging phenoxides, and two nonadjacent terminal THF ligands; 4, one terminal chloride, two bridging phenoxides, and two nonadjacent terminal THF ligands). Apparently, the phenoxide ligand steric features exert a greater influence on the solid-state structures than the electronic properties of the substituents. Emission spectroscopy has been utilized to investigate the molecularity and electronic structure of these compounds. For example, luminescence spectra taken at liquid nitrogen temperature allow for a determination of the dependence of the molecular aggregation of 3 on the molecular concentration. Electronic and vibrational spectroscopic measurements have been analyzed to examine trends in emission energies and stretching frequencies. However, comparison of the data for compounds 1-4 reveals that the innate electron-donating capacity of phenoxide ligands is only subtly manifest in either the electronic or vibrational energy distributions within these molecules.