Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(3): e1008444, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32208458

RESUMO

Cystic fibrosis (CF) is a genetic disease that affects mucin-producing body organs such as the lungs. Characteristic of CF is the production of thick, viscous mucus, containing the glycoprotein mucin, that can lead to progressive airway obstruction. Recently, we demonstrated that the presence of mucin induced a rapid surface adaptation in motile bacteria termed surfing motility, which data presented here indicates is very different from swarming motility. Pseudomonas aeruginosa, the main colonizing pathogen in CF, employs several stress coping mechanisms to survive the highly viscous environment of the CF lung. We used motility-based assays and RNA-Seq to study the stringent stress response in the hypervirulent CF isolate LESB58 (Liverpool Epidemic Strain). Motility experiments revealed that an LESB58 stringent response mutant (ΔrelAΔspoT) was unable to surf. Transcriptional profiling of ΔrelAΔspoT mutant cells from surfing agar plates, when compared to wild-type cells from the surfing edge, revealed 2,584 dysregulated genes. Gene Ontology and KEGG enrichment analysis revealed effects of the stringent response on amino acid, nucleic acid and fatty acid metabolism, TCA cycle and glycolysis, type VI secretion, as well as chemotaxis, cell communication, iron transport, nitrogen metabolic processes and cyclic-di-GMP signalling. Screening of the ordered PA14 transposon library revealed 224 mutants unable to surf and very limited overlap with genes required for swarming. Mutants affecting surfing included two downstream effector genes of the stringent stress response, the copper regulator cueR and the quinolone synthase pqsH. Both the cueR and pqsH cloned genes complemented the surfing deficiency of ΔrelAΔspoT. Our study revealed insights into stringent stress dependency in LESB58 and showed that surfing motility is stringently-controlled via the expression of cueR and pqsH. Downstream factors of the stringent stress response are important to investigate in order to fully understand its ability to colonize and persist in the CF lung.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação a DNA , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa , Sistemas do Segundo Mensageiro , Estresse Fisiológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade
2.
PLoS One ; 16(4): e0250977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930077

RESUMO

Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that causes considerable human morbidity and mortality, particularly in nosocomial infections and individuals with cystic fibrosis. P. aeruginosa can adapt to surface growth by undergoing swarming motility, a rapid multicellular movement that occurs on viscous soft surfaces with amino acids as a nitrogen source. Here we tested the small synthetic host defense peptide, innate defense regulator 1018, and found that it inhibited swarming motility at concentrations as low as 0.75 µg/ml, well below the MIC for strain PA14 planktonic cells (64 µg/ml). A screen of the PA14 transposon insertion mutant library revealed 29 mutants that were more tolerant to peptide 1018 during swarming, five of which demonstrated significantly greater swarming than the WT in the presence of peptide. Transcriptional analysis (RNA-Seq) of cells that were inoculated on swarming plates containing 1.0 µg/ml peptide revealed differential expression of 1,190 genes compared to cells swarming on plates without peptide. Furthermore, 1018 treatment distinctly altered the gene expression profile of cells when compared to that untreated cells in the centre of the swarm colonies. Peptide-treated cells exhibited changes in the expression of genes implicated in the stringent stress response including those regulated by anr, which is involved in anaerobic adaptation, indicative of a mechanism by which 1018 might inhibit swarming motility. Overall, this study illustrates potential mechanisms by which peptide 1018 inhibits swarming surface motility, an important bacterial adaptation associated with antibiotic resistance, virulence, and dissemination of P. aeruginosa.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Peptídeos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Transativadores/metabolismo , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Resistência Microbiana a Medicamentos , Humanos , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transativadores/genética , Virulência
3.
Front Immunol ; 11: 618387, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643299

RESUMO

T-cells genetically engineered to express a chimeric antigen receptor (CAR) have shown remarkable results in patients with B-cell malignancies, including B-cell acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and mantle cell lymphoma, with some promising efficacy in patients with multiple myeloma. However, the efficacy of CAR T-cell therapy is still hampered by local immunosuppression and significant toxicities, notably cytokine release syndrome (CRS) and neurotoxicity. The tumor microenvironment (TME) has been identified to play a major role in preventing durable responses to immunotherapy in both solid and hematologic malignancies, with this role exaggerated in solid tumors. The TME comprises a diverse set of components, including a heterogeneous population of various cells and acellular elements that collectively contribute towards the interplay of pro-immune and immunosuppressive signaling. In particular, macrophages, myeloid-derived suppressor cells, regulatory T-cells, and cell-free factors such as cytokines are major contributors to local immunosuppression in the TME of patients treated with CAR T-cells. In order to create a more favorable niche for CAR T-cell function, armored CAR T-cells and other combinatorial approaches are being explored for potential improved outcomes compared to conventional CAR T-cell products. While these strategies may potentiate CAR T-cell function and efficacy, they may paradoxically increase the risk of adverse events due to increased pro-inflammatory signaling. Herein, we discuss the mechanisms by which the TME antagonizes CAR T-cells and how innovative immunotherapy strategies are being developed to address this roadblock. Furthermore, we offer perspective on how these novel approaches may affect the risk of adverse events, in order to identify ways to overcome these barriers and expand the clinical benefits of this treatment modality in patients with diverse cancers. Precise immunomodulation to allow for improved tumor control while simultaneously mitigating the toxicities seen with current generation CAR T-cells is integral for the future application of more effective CAR T-cells against other malignancies.


Assuntos
Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Microambiente Tumoral/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Humanos , Receptores de Antígenos Quiméricos/imunologia
4.
ISME J ; 14(12): 2997-3010, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32770116

RESUMO

Active migration across semi-solid surfaces is important for bacterial success by facilitating colonization of unoccupied niches and is often associated with altered virulence and antibiotic resistance profiles. We isolated an atmospheric contaminant, subsequently identified as a new strain of Bacillus mobilis, which showed a unique, robust, rapid, and inducible filamentous surface motility. This flagella-independent migration was characterized by formation of elongated cells at the expanding edge and was induced when cells were inoculated onto lawns of metabolically inactive Campylobacter jejuni cells, autoclaved bacterial biomass, adsorbed milk, and adsorbed blood atop hard agar plates. Phosphatidylcholine (PC), bacterial membrane components, and sterile human fecal extracts were also sufficient to induce filamentous expansion. Screening of eight other Bacillus spp. showed that filamentous motility was conserved amongst B. cereus group species to varying degrees. RNA-Seq of elongated expanding cells collected from adsorbed milk and PC lawns versus control rod-shaped cells revealed dysregulation of genes involved in metabolism and membrane transport, sporulation, quorum sensing, antibiotic synthesis, and virulence (e.g., hblA/B/C/D and plcR). These findings characterize the robustness and ecological significance of filamentous surface motility in B. cereus group species and lay the foundation for understanding the biological role it may play during environment and host colonization.


Assuntos
Bacillus cereus , Proteínas de Bactérias , Bacillus , Bacillus cereus/genética , Proteínas de Bactérias/genética , Flagelos , Humanos , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA