Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecology ; 96(8): 2117-26, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26405737

RESUMO

The "landscape of fear" model has been proposed as a unifying concept in ecology, describing, in part, how animals behave and move about in their environment. The basic model predicts that as an animal's landscape changes from low to high risk of predation, prey species will alter their behavior to risk avoidance. However, studies investigating and evaluating the landscape of fear model across large spatial scales (tens to hundreds of thousands of square kilometers) in dynamic, open, aquatic systems involving apex predators and highly mobile prey are lacking. To address this knowledge gap, we investigated predator-prey relationships between. tiger sharks (Galeocerdo cuvier) and loggerhead turtles (Caretta caretta) in the North Atlantic Ocean. This included the use of satellite tracking to examine shark and turtle distributions as well as their surfacing behaviors under varying levels of home range overlap. Our findings revealed patterns that deviated from our a priori predictions based on the landscape of fear model. Specifically, turtles did not alter their surfacing behaviors to risk avoidance when overlap in shark-turtle core home range was high. However, in areas of high overlap with turtles, sharks exhibited modified surfacing behaviors that may enhance predation opportunity. We suggest that turtles may be an important factor in determining shark,distribution, whereas for turtles, other life history trade-offs may play a larger role in defining their habitat use. We propose that these findings are a result of both biotic and physically driven factors that independently or synergistically affect predator-prey interactions in this system. These results have implications for evolutionary biology, community ecology; and wildlife conservation. Further, given the difficulty in studying highly migratory marine species, our approach and conclusions may be applied to the study of other predator-prey systems.


Assuntos
Ecossistema , Medo , Comportamento Predatório/fisiologia , Tubarões/fisiologia , Tartarugas/fisiologia , Distribuição Animal , Animais , Oceano Atlântico , Reação de Fuga , Estações do Ano , Astronave , Telemetria
2.
Environ Entomol ; 50(3): 649-657, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33822897

RESUMO

Ants have been suggested as one of many population pressures sea turtles face potentially affecting nesting-beach survival of eggs and hatchlings. However, little is known about the extent to which ants act as incidental or primary mortality factors. Most research has focused on New World fire ants (genus Solenopsis), with confirmed records of other ant species interactions with sea turtle nests in situ being rare. Our study documented the ant species associated with loggerhead sea turtle Caretta caretta (Linnaeus) (Testudines: Cheloniidae) nests in Georgia and determined if ant presence was linked to lower hatching or emergence success. Samples (n = 116) collected from sea turtle nests on eight islands contained 14 ant species including Solenopsis invicta Buren (Hymenoptera: Formicidae), the red imported fire ant, which was the most common ant species encountered. Ant presence was not correlated with lower hatching success, but when other known disturbances were removed, correlated with significantly lower nest emergence success (P < 0.0001). Logistic modeling suggests that proximity of sea turtle nests to the primary dune significantly increases risk of ant predation on hatchling sea turtles. Population managers can reduce this risk by maintaining a 1-m buffer shoreward between dune vegetation and relocated sea turtle nests. Our results suggest that ants may exert a density-dependent pressure on nesting sea turtle populations and call for additional investigations to determine if managing native and invasive ants augments other efforts to improve hatchling survival.


Assuntos
Formigas , Tartarugas , Animais , Georgia , Óvulo , Comportamento Predatório
3.
PLoS One ; 15(4): e0231325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32282844

RESUMO

Population assessments conducted at reproductive sites of migratory species necessitate understanding the foraging-area origins of breeding individuals. Without this information, efforts to contextualize changes in breeding populations and develop effective management strategies are compromised. We used stable isotope analysis of tissue samples collected from loggerhead sea turtles (Caretta caretta) nesting at seven sites in the Northern Recovery Unit (NRU) of the eastern United States (North Carolina, South Carolina and Georgia) to assign females to three separate foraging areas in the Northwest Atlantic Ocean (NWA). We found that the majority of the females at NRU nesting sites (84.4%) use more northern foraging areas in the Mid-Atlantic Bight, while fewer females use more proximate foraging areas in the South Atlantic Bight (13.4%) and more southerly foraging areas in the Subtropical Northwest Atlantic (2.2%). We did not find significant latitudinal or temporal trends in the proportions of NRU females originating from different foraging areas. Combining these findings with previous data from stable isotope and satellite tracking studies across NWA nesting sites showed that variation in the proportion of adult loggerheads originating from different foraging areas is primarily related differences between recovery units: individuals in the NRU primarily use the Mid-Atlantic Bight foraging area, while individuals from the three Florida recovery units primarily use the Subtropical Northwest Atlantic and Eastern Gulf of Mexico foraging areas. Because each foraging area is associated with its own distinct ecological characteristics, environmental fluctuations and anthropogenic threats that affect the abundance and productivity of individuals at nesting sites, this information is critical for accurately evaluating population trends and developing effective region-specific management strategies.


Assuntos
Cruzamento , Tartarugas/fisiologia , Migração Animal , Animais , Oceano Atlântico , Feminino , Comportamento de Nidação , Tartarugas/crescimento & desenvolvimento
4.
Conserv Physiol ; 2(1): cou049, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27293670

RESUMO

Carbon and nitrogen stable isotope (δ(13)C and δ(15)N) analysis has been used to elucidate foraging and migration behaviours of endangered sea turtle populations. Isotopic analysis of tissue samples from nesting females can provide information about their foraging locations before reproduction. To determine whether loggerhead (Caretta caretta) eggs provide a good proxy for maternal isotope values, we addressed the following three objectives: (i) we evaluated isotopic effects of ethanol preservation and lipid extraction on yolk; (ii) we examined the isotopic offset between maternal epidermis and corresponding egg yolk and albumen tissue δ(13)C and δ(15)N values; and (iii) we assessed the accuracy of foraging ground assignment using egg yolk and albumen stable isotope values as a proxy for maternal epidermis. Epidermis (n = 61), albumen (n = 61) and yolk samples (n = 24) were collected in 2011 from nesting females at Wassaw Island, GA, USA. Subsamples from frozen and ethanol-preserved yolk samples were lipid extracted. Both lipid extraction and ethanol preservation significantly affected yolk δ(13)C, while δ(15)N values were not altered at a biologically relevant level. The mathematical corrections provided here allow for normalization of yolk δ(13)C values with these treatments. Significant tissue conversion equations were found between δ(13)C and δ(15)N values of maternal epidermis and corresponding yolk and albumen. Finally, the consistency in assignment to a foraging area was high (up to 84%), indicating that these conversion equations can be used in future studies where stable isotopes are measured to determine female foraging behaviour and trophic relationships by assessing egg components. Loggerhead eggs can thus provide reliable isotopic information when samples from nesting females cannot be obtained.

5.
PLoS One ; 8(4): e62326, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23638041

RESUMO

Assessments of population trends based on time-series counts of individuals are complicated by imperfect detection, which can lead to serious misinterpretations of data. Population trends of threatened marine turtles worldwide are usually based on counts of nests or nesting females. We analyze 39 years of nest-count, female-count, and capture-mark-recapture (CMR) data for nesting loggerhead turtles (Caretta caretta) on Wassaw Island, Georgia, USA. Annual counts of nests and females, not corrected for imperfect detection, yield significant, positive trends in abundance. However, multistate open robust design modeling of CMR data that accounts for changes in imperfect detection reveals that the annual abundance of nesting females has remained essentially constant over the 39-year period. The dichotomy could result from improvements in surveys or increased within-season nest-site fidelity in females, either of which would increase detection probability. For the first time in a marine turtle population, we compare results of population trend analyses that do and do not account for imperfect detection and demonstrate the potential for erroneous conclusions. Past assessments of marine turtle population trends based exclusively on count data should be interpreted with caution and re-evaluated when possible. These concerns apply equally to population assessments of all species with imperfect detection.


Assuntos
Comportamento de Nidação , Tartarugas , Animais , Feminino , Seguimentos , Georgia , Masculino , Densidade Demográfica , Estações do Ano
6.
Mol Ecol Resour ; 11(1): 110-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21429107

RESUMO

Tagging studies on nesting beaches are commonly used to estimate nesting frequency, remigration interval and nesting population size for marine turtle rookeries. Estimates of these demographic parameters from tagging projects may be biased because of the small scale of tagging efforts relative to female nest site fidelity and the logistical difficulty of intercepting all nesting females. Therefore, alternative and supplemental means of individual identification of nesting females are required. We demonstrate that maternal nuclear microsatellite DNA can be isolated from unincubated eggshells of the loggerhead sea turtle (Caretta caretta) through comparison of DNA extracted from 59 eggs collected within 15 h of oviposition and DNA derived from skin samples from respective nesting females. Scorable microsatellite genotypes were produced in 897 of 994 (90.2%) single-locus egg amplifications attempted. Among eggs from known females, 730 of 748 (97.6%) single-locus, egg-derived genotypes matched the respective skin-derived genotypes. Allelic dropout was the most common type of error, followed by the presence of nonmaternal, presumably paternal, alleles. Genotypes derived from unincubated eggshells permit individual assignment of nests and therefore demographic parameter estimates for loggerhead turtle nesting populations, despite genotyping errors that require further optimization. Although sampling unincubated eggs is destructive, this technique is noninvasive to nesting females and is applicable in marine turtle population genetics studies when individual resolution is required but direct interception of nesting females is undesirable or logistically infeasible.


Assuntos
Núcleo Celular/genética , DNA/genética , Genética Populacional/métodos , Óvulo/citologia , Tartarugas/genética , Animais , Feminino , Genótipo , Repetições de Microssatélites , Comportamento de Nidação , Reprodução , Especificidade da Espécie , Tartarugas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA