RESUMO
For unweighted graphs, finding isometric embeddings of a graph G is closely related to decompositions of G into Cartesian products of smaller graphs. When G is isomorphic to a Cartesian graph product, we call the factors of this product a factorization of G. When G is isomorphic to an isometric subgraph of a Cartesian graph product, we call those factors a pseudofactorization of G. Prior work has shown that an unweighted graph's pseudofactorization can be used to generate a canonical isometric embedding into a product of the smallest possible pseudofactors. However, for arbitrary weighted graphs, which represent a richer variety of metric spaces, methods for finding isometric embeddings or determining their existence remain elusive, and indeed pseudofactorization and factorization have not previously been extended to this context. In this work, we address the problem of finding the factorization and pseudofactorization of a weighted graph G, where G satisfies the property that every edge constitutes a shortest path between its endpoints. We term such graphs minimal graphs, noting that every graph can be made minimal by removing edges not affecting its path metric. We generalize pseudofactorization and factorization to minimal graphs and develop new proof techniques that extend the previously proposed algorithms due to Graham and Winkler [Graham and Winkler, '85] and Feder [Feder, '92] for pseudofactorization and factorization of unweighted graphs. We show that any n-vertex, m-edge graph with positive integer edge weights can be factored in O(m2) time, plus the time to find all pairs shortest paths (APSP) distances in a weighted graph, resulting in an overall running time of O(m2+n2 log log n) time. We also show that a pseudofactorization for such a graph can be computed in O(mn) time, plus the time to solve APSP, resulting in an O(mn+n2 log log n) running time.
RESUMO
A mapping α:V(G)âV(H) from the vertex set of one graph G to another graph H is an isometric embedding if the shortest path distance between any two vertices in G equals the distance between their images in H. Here, we consider isometric embeddings of a weighted graph G into unweighted Hamming graphs, called Hamming embeddings, when G satisfies the property that every edge is a shortest path between its endpoints. Using a Cartesian product decomposition of G called its canonical isometric representation, we show that every Hamming embedding of G may be partitioned into a canonical partition, whose parts provide Hamming embeddings for each factor of the canonical isometric representation of G. This implies that G permits a Hamming embedding if and only if each factor of its canonical isometric representation is Hamming embeddable. This result extends prior work on unweighted graphs that showed that an unweighted graph permits a Hamming embedding if and only if each factor is a complete graph. When a graph G has nontrivial isometric representation, determining whether G has a Hamming embedding can be simplified to checking embeddability of two or more smaller graphs.