Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(39): 6679-6696, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37607821

RESUMO

It is widely accepted that Pavlovian fear conditioning requires activation of NMDA receptors (NMDARs) in the basolateral amygdala complex (BLA). However, it was recently shown that activation of NMDAR in the BLA is only required for fear conditioning when danger occurs unexpectedly; it is not required for fear conditioning when danger occurs as expected. This study tested the hypothesis that NMDARs in the BLA are engaged for Pavlovian fear conditioning when an animal's predictions regarding danger are in error. In each experiment, rats (females in Experiment 1 and males in Experiments 2-5) were conditioned to fear one stimulus, S1, when it was paired with foot-shock (S1→shock), and 48 h later, a second stimulus, S2, when it was presented in sequence with the already-conditioned S1 and foot-shock (S2→S1→shock). Conditioning to S2 occurred under a BLA infusion of the NMDAR antagonist, D-AP5 or vehicle. The subsequent tests of freezing to S2 alone and S1 alone revealed that the antagonist had no effect on conditioning to S2 when the shock occurred exactly as predicted by the S1, but disrupted this conditioning when the shock occurred earlier/later than predicted by S1, or at a stronger/weaker intensity. These results imply that errors in the timing or intensity of a predicted foot-shock engage NMDARs in the BLA for Pavlovian fear conditioning. They are discussed in relation to theories which propose a role for prediction error in determining how experiences are organized in memory and how activation of NMDAR in the BLA might contribute to this organization.SIGNIFICANCE STATEMENT This study is significant in showing that prediction error determines how a new experience is encoded with respect to a past experience and, thereby, whether NMDA receptors (NMDARs) in the basolateral amygdala complex (BLA) encode the new experience. When prediction error is small (e.g., danger occurs as and when expected), the new experience is encoded together with a past experience as part of the same "mental model," and NMDAR activation in the BLA is not needed for this encoding. By contrast, when prediction error is large (e.g., danger occurs at an unexpected intensity or time), the new experience is encoded separately from the past experience as part of a new mental model, and NMDAR activation in the BLA is needed for this encoding.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Masculino , Ratos , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Tonsila do Cerebelo/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia
2.
J Neurosci ; 42(21): 4360-4379, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35410880

RESUMO

It is widely accepted that activation of NMDA receptors (NMDAR) is necessary for the formation of fear memories in the basolateral amygdala complex (BLA). This acceptance is based on findings that blockade of NMDAR in the BLA disrupts Pavlovian fear conditioning in rodents when initially innocuous stimuli are paired with aversive and unexpected events (surprising foot shock). The present study challenges this acceptance by showing that the involvement of NMDAR in Pavlovian fear conditioning is determined by prediction errors in relation to aversive events. In the initial experiments, male rats received a BLA infusion of the NMDAR antagonist, D-AP5 and were then exposed to pairings of a novel target stimulus and foot shock. This infusion disrupted acquisition of fear to the target when the shock was surprising (experiments 1a, 1b, 2a, 2b, 3a, and 3b) but spared fear to the target when the shock was expected based on the context, time and other stimuli that were present (experiments 1a and 1b). Under the latter circumstances, fear to the target required activation of calcium-permeable AMPAR (CP-AMPA; experiments 4a, 4b, and 4c), which, using electrophysiology, were shown to regulate the activity of interneurons in the BLA (experiment 5). Thus, NMDAR activation is not required for fear conditioning when danger occurs as expected given the context, time and stimuli present, but is required for fear conditioning when danger occurs unexpectedly. These findings are related to current theories of NMDAR function and ways that prediction errors might influence the substrates of fear memory formation in the BLA.SIGNIFICANCE STATEMENT It is widely accepted that NMDA receptors (NMDAR) in the basolateral amygdala complex (BLA) are activated by pairings of a conditioned stimulus (CS) and an aversive unconditioned (US) stimulus, leading to the synaptic changes that underlie formation of a CS-US association. The present findings are significant in showing that this theory is incomplete. When the aversive US is unexpected, animals encode all features of the situation (context, time and stimuli present) as a new fear/threat memory, which is regulated by NMDAR in the BLA. However, when the US is expected based on the context, time and stimuli present, the new fear memory is assimilated into networks that represent those features, which occurs independently of NMDAR activation in the BLA.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Tonsila do Cerebelo/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Masculino , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo
3.
J Neurosci ; 39(37): 7357-7368, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31341027

RESUMO

Consolidation of conditioned fear to a stimulus (S1) paired with shock requires de novo protein synthesis in the basolateral amygdala complex (BLA), whereas consolidation of conditioned fear to a stimulus (S2) paired with the fear-eliciting S1 requires DNA methylation but not de novo protein synthesis in the BLA. The present experiments merged these protocols by exposing rats to pairings of a serial S2-S1 compound and shock to examine if/when protein synthesis in the BLA is required to consolidate fear to S2. Rats received a BLA infusion of the protein synthesis inhibitor, cycloheximide, immediately after the S2-S1-shock session and were subsequently tested with S2. The infusion disrupted consolidation of fear to S2 when there had been no prior training of S1 (Experiment 1), the prior training had consisted of unpaired presentations of S1 and shock (Experiment 4), or in pairings of S1 and sucrose (Experiment 5). Consolidation of fear to S2 was unaffected by the infusion of cycloheximide but was disrupted by the DNA methyltransferase inhibitor, 5-AZA, when S1 had been previously fear-conditioned (Experiments 2a, 2b, and 3). These findings imply that what has already been learned about S1 determines the BLA processes that consolidate fear to S2. The already-fear-conditioned S1 blocks the S2-shock association that otherwise forms (and whose consolidation requires de novo protein synthesis in the BLA) while simultaneously acting as a learned source of danger for its S2 associate (whose consolidation requires DNA methylation but not de novo protein synthesis in the BLA).SIGNIFICANCE STATEMENT Protein synthesis is widely thought to be crucial for consolidating new learning into stable memories, including the consolidation of conditioned fear memories in the basolateral amygdala complex (BLA). However, our data provide clear evidence that the requirement for protein synthesis to consolidate conditioned fear in the BLA depends on an animal's previous training history, and the type of learning that is consolidated. Further, within the BLA, our data show that DNA methylation, and not protein synthesis, is necessary to consolidate higher-order conditioned fear, indicating that epigenetic mechanisms may provide a more fundamental mnemonic substrate.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Consolidação da Memória/fisiologia , Biossíntese de Proteínas/fisiologia , Estimulação Acústica/métodos , Animais , Medo/psicologia , Masculino , Estimulação Luminosa/métodos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA