Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Qual Life Res ; 33(7): 1841-1851, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740640

RESUMO

PURPOSE: Quality of Life (QoL) is associated with a bandwidth of lifestyle factors that can be subdivided into fixed and potentially modifiable ones. We know too little about the role of potentially modifiable factors in comparison to fixed ones. This study examines four aspects of QoL and its associations with 15 factors in a sample of elderly primary care patients with a high risk of dementia. The main objectives are (a) to determine the role of the factors in this particular group and (b) to assess the proportion of fixed and potentially modifiable factors. METHOD: A high-risk group of 1030 primary care patients aged between 60 and 77 years (52.1% females) were enrolled in "AgeWell.de," a cluster-randomized, controlled trial. This paper refers to the baseline data. The multi-component intervention targets to decrease the risk of dementia by optimization of associated lifestyle factors. 8 fixed and 7 modifiable factors potentially influencing QoL served as predictors in multiple linear regressions. RESULTS: The highest proportion of explained variance was found in psychological health and age-specific QoL. In comparison to health-related QoL and physical health, the modifiable predictors played a major role (corr. R2: 0.35/0.33 vs. 0.18), suggesting that they hold a greater potential for improving QoL. CONCLUSION: Social engagement, body weight, instrumental activities of daily living, and self-efficacy beliefs appeared as lifestyle factors eligible to be addressed in an intervention program for improving QoL. TRIAL REGISTRATION: German Clinical Trials Register, reference number: DRKS00013555. Date of registration: 07.12.2017.


Assuntos
Demência , Atenção Primária à Saúde , Qualidade de Vida , Humanos , Qualidade de Vida/psicologia , Feminino , Idoso , Masculino , Pessoa de Meia-Idade , Demência/psicologia , Estilo de Vida , Inquéritos e Questionários
2.
Pestic Biochem Physiol ; 191: 105339, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963921

RESUMO

There are many insect pests worldwide that damage agricultural crop and reduce yield either by direct feeding or by the transmission of plant diseases. To date, control of pest insects has been achieved largely by applying synthetic insecticides. However, insecticide use can be seriously impacted by legislation that limits their use or by the evolution of resistance in the target pest. Thus, there is a move towards less use of insecticides and increased adoption of integrated pest management strategies using a wide range of non-chemical and chemical control methods. For good pest control there is a need to understand the mode of action and selectivity of insecticides, the life cycles of the pests and their biology and behaviours, all of which can benefit from good quality genome data. Here we present the complete assembled (chromosome level) genomes (incl. mtDNA) of 19 insect pests, Agriotes lineatus (click beetle/wireworm), Aphis gossypii (melon/cotton aphid), Bemisia tabaci (cotton whitefly), Brassicogethes aeneus (pollen beetle), Ceutorhynchus obstrictus (seedpod weevil), Chilo suppressalis (striped rice stem borer), Chrysodeixis includens (soybean looper), Diabrotica balteata (cucumber beetle), Diatraea saccharalis (sugar cane borer), Nezara viridula (green stink bug), Nilaparvata lugens (brown plant hopper), Phaedon cochleariae (mustard beetle), Phyllotreta striolata (striped flea beetle), Psylliodes chrysocephala (cabbage stem flea beetle), Spodoptera exigua (beet army worm), Spodoptera littoralis (cotton leaf worm), Diabrotica virgifera (western corn root worm), Euschistus heros (brown stink bug) and Phyllotreta cruciferae (crucifer flea beetle). For the first 15 of these we also present the annotation of genes encoding potential xenobiotic detoxification enzymes. This public resource will aid in the elucidation and monitoring of resistance mechanisms, the development of highly selective chemistry and potential techniques to disrupt behaviour in a way that limits the effect of the pests.


Assuntos
Afídeos , Besouros , Heterópteros , Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Agricultura/métodos , Controle de Pragas , Besouros/genética , Controle de Insetos/métodos
3.
BMC Genomics ; 23(1): 198, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279098

RESUMO

BACKGROUND: Sphaerophoria rueppellii, a European species of hoverfly, is a highly effective beneficial predator of hemipteran crop pests including aphids, thrips and coleopteran/lepidopteran larvae in integrated pest management (IPM) programmes. It is also a key pollinator of a wide variety of important agricultural crops. No genomic information is currently available for S. rueppellii. Without genomic information for such beneficial predator species, we are unable to perform comparative analyses of insecticide target-sites and genes encoding metabolic enzymes potentially responsible for insecticide resistance, between crop pests and their predators. These metabolic mechanisms include several gene families - cytochrome P450 monooxygenases (P450s), ATP binding cassette transporters (ABCs), glutathione-S-transferases (GSTs), UDP-glycosyltransferases (UGTs) and carboxyl/choline esterases (CCEs). METHODS AND FINDINGS: In this study, a high-quality near-chromosome level de novo genome assembly (as well as a mitochondrial genome assembly) for S. rueppellii has been generated using a hybrid approach with PacBio long-read and Illumina short-read data, followed by super scaffolding using Hi-C data. The final assembly achieved a scaffold N50 of 87Mb, a total genome size of 537.6Mb and a level of completeness of 96% using a set of 1,658 core insect genes present as full-length genes. The assembly was annotated with 14,249 protein-coding genes. Comparative analysis revealed gene expansions of CYP6Zx P450s, epsilon-class GSTs, dietary CCEs and multiple UGT families (UGT37/302/308/430/431). Conversely, ABCs, delta-class GSTs and non-CYP6Zx P450s showed limited expansion. Differences were seen in the distributions of resistance-associated gene families across subfamilies between S. rueppellii and some hemipteran crop pests. Additionally, S. rueppellii had larger numbers of detoxification genes than other pollinator species. CONCLUSION AND SIGNIFICANCE: This assembly is the first published genome for a predatory member of the Syrphidae family and will serve as a useful resource for further research into selectivity and potential tolerance of insecticides by beneficial predators. Furthermore, the expansion of some gene families often linked to insecticide resistance and selectivity may be an indicator of the capacity of this predator to detoxify IPM selective insecticides. These findings could be exploited by targeted insecticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably and effectively controlling pests without impacting beneficial predator populations.


Assuntos
Dípteros , Inseticidas , Animais , Cromossomos , Dípteros/genética , Tamanho do Genoma , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia
4.
BMC Genomics ; 23(1): 45, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35012450

RESUMO

BACKGROUND: Orius laevigatus, a minute pirate bug, is a highly effective beneficial predator of crop pests including aphids, spider mites and thrips in integrated pest management (IPM) programmes. No genomic information is currently available for O. laevigatus, as is the case for the majority of beneficial predators which feed on crop pests. In contrast, genomic information for crop pests is far more readily available. The lack of publicly available genomes for beneficial predators to date has limited our ability to perform comparative analyses of genes encoding potential insecticide resistance mechanisms between crop pests and their predators. These mechanisms include several gene/protein families including cytochrome P450s (P450s), ATP binding cassette transporters (ABCs), glutathione S-transferases (GSTs), UDP-glucosyltransferases (UGTs) and carboxyl/cholinesterases (CCEs). METHODS AND FINDINGS: In this study, a high-quality scaffold level de novo genome assembly for O. laevigatus has been generated using a hybrid approach with PacBio long-read and Illumina short-read data. The final assembly achieved a scaffold N50 of 125,649 bp and a total genome size of 150.98 Mb. The genome assembly achieved a level of completeness of 93.6% using a set of 1658 core insect genes present as full-length genes. Genome annotation identified 15,102 protein-coding genes - 87% of which were assigned a putative function. Comparative analyses revealed gene expansions of sigma class GSTs and CYP3 P450s. Conversely the UGT gene family showed limited expansion. Differences were seen in the distributions of resistance-associated gene families at the subfamily level between O. laevigatus and some of its targeted crop pests. A target site mutation in ryanodine receptors (I4790M, PxRyR) which has strong links to diamide resistance in crop pests and had previously only been identified in lepidopteran species was found to also be present in hemipteran species, including O. laevigatus. CONCLUSION AND SIGNIFICANCE: This assembly is the first published genome for the Anthocoridae family and will serve as a useful resource for further research into target-site selectivity issues and potential resistance mechanisms in beneficial predators. Furthermore, the expansion of gene families often linked to insecticide resistance may be an indicator of the capacity of this predator to detoxify selective insecticides. These findings could be exploited by targeted pesticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably, environmentally-friendly and effectively control pests without impacting beneficial predator populations.


Assuntos
Heterópteros , Inseticidas , Tisanópteros , Animais , Genoma , Humanos , Resistência a Inseticidas
5.
Dig Dis Sci ; 67(7): 3148-3157, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34401983

RESUMO

BACKGROUND AND AIMS: The value of ustekinumab (UST) therapeutic drug monitoring (TDM) in clinical practice remains unclear. This study examined the impact of UST TDM on clinical decision making in patients with Crohn's disease (CD). METHODS: A total of 110 consecutive UST-treated CD patients were enrolled in this multicenter, single-arm cross-sectional study. During a single study visit, clinical decisions, disease characteristics, and serum and fecal samples were obtained. The primary outcome was congruency of the actual and two hypothetical clinical decisions based on provision of UST TDM (with and without fecal calprotectin [FCP]) to participating clinicians. Decisions were compared against those of a review panel. A sub-study retrospectively measured the associations of clinical outcomes at the next follow-up visit with serum UST concentration [UST]. RESULTS: No differences in the pattern of decisions by clinicians were observed before and after provision of UST TDM (P = 1.0) or UST TDM + FCP (P = 0.86). However, 39% (TDM) and 50% (TDM + FCP) of hypothetical decisions differed from the initial decisions. The review panel's decisions differed with the addition of TDM + FCP (P = 0.0006), but not TDM alone (P = 0.16). The sub-study (n = 53) failed to detect an association between therapeutic serum [UST] at the initial study visit and clinical outcomes at the next visit. CONCLUSIONS: In consecutive CD patients treated with UST, the addition of TDM into routine clinical practice did not significantly impact clinical decisions and there was no association between short-term clinical outcomes and serum [UST]. Further studies are warranted before clinicians routinely implement UST TDM into clinical practice.


Assuntos
Doença de Crohn , Ustekinumab , Doença de Crohn/diagnóstico , Doença de Crohn/tratamento farmacológico , Estudos Transversais , Monitoramento de Medicamentos , Humanos , Complexo Antígeno L1 Leucocitário , Estudos Retrospectivos , Ustekinumab/uso terapêutico
6.
PLoS Genet ; 15(2): e1007903, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716069

RESUMO

The impact of pesticides on the health of bee pollinators is determined in part by the capacity of bee detoxification systems to convert these compounds to less toxic forms. For example, recent work has shown that cytochrome P450s of the CYP9Q subfamily are critically important in defining the sensitivity of honey bees and bumblebees to pesticides, including neonicotinoid insecticides. However, it is currently unclear if solitary bees have functional equivalents of these enzymes with potentially serious implications in relation to their capacity to metabolise certain insecticides. To address this question, we sequenced the genome of the red mason bee, Osmia bicornis, the most abundant and economically important solitary bee species in Central Europe. We show that O. bicornis lacks the CYP9Q subfamily of P450s but, despite this, exhibits low acute toxicity to the N-cyanoamidine neonicotinoid thiacloprid. Functional studies revealed that variation in the sensitivity of O. bicornis to N-cyanoamidine and N-nitroguanidine neonicotinoids does not reside in differences in their affinity for the nicotinic acetylcholine receptor or speed of cuticular penetration. Rather, a P450 within the CYP9BU subfamily, with recent shared ancestry to the Apidae CYP9Q subfamily, metabolises thiacloprid in vitro and confers tolerance in vivo. Our data reveal conserved detoxification pathways in model solitary and eusocial bees despite key differences in the evolution of specific pesticide-metabolising enzymes in the two species groups. The discovery that P450 enzymes of solitary bees can act as metabolic defence systems against certain pesticides can be leveraged to avoid negative pesticide impacts on these important pollinators.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/genética , Neonicotinoides/farmacologia , Animais , Evolução Biológica , Sistema Enzimático do Citocromo P-450/genética , Europa (Continente) , Genômica/métodos , Inseticidas/farmacologia , Polinização/efeitos dos fármacos , Polinização/genética , Tiazinas/farmacologia
7.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884838

RESUMO

Alterations to amino acid residues G4946 and I4790, associated with resistance to diamide insecticides, suggests a location of diamide interaction within the pVSD voltage sensor-like domain of the insect ryanodine receptor (RyR). To further delineate the interaction site(s), targeted alterations were made within the same pVSD region on the diamondback moth (Plutella xylostella) RyR channel. The editing of five amino acid positions to match those found in the diamide insensitive skeletal RyR1 of humans (hRyR1) in order to generate a human-Plutella chimeric construct showed that these alterations strongly reduce diamide efficacy when introduced in combination but cause only minor reductions when introduced individually. It is concluded that the sites of diamide interaction on insect RyRs lie proximal to the voltage sensor-like domain of the RyR and that the main site of interaction is at residues K4700, Y4701, I4790 and S4919 in the S1 to S4 transmembrane domains.


Assuntos
Diamida/química , Proteínas de Insetos/química , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Animais , Sítios de Ligação , Cafeína/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Diamida/metabolismo , Diamida/farmacologia , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/química , Inseticidas/metabolismo , Inseticidas/farmacologia , Mariposas/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacologia
8.
Mol Ecol ; 29(14): 2661-2675, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510730

RESUMO

The evolution of resistance to drugs and pesticides poses a major threat to human health and food security. Neonicotinoids are highly effective insecticides used to control agricultural pests. They target the insect nicotinic acetylcholine receptor and mutations of the receptor that confer resistance have been slow to develop, with only one field-evolved mutation being reported to date. This is an arginine-to-threonine substitution at position 81 of the nAChR_ß1 subunit in neonicotinoid-resistant aphids. To validate the role of R81T in neonicotinoid resistance and to test whether it may confer any significant fitness costs to insects, CRISPR/Cas9 was used to introduce an analogous mutation in the genome of Drosophila melanogaster. Flies carrying R81T showed an increased tolerance (resistance) to neonicotinoid insecticides, accompanied by a significant reduction in fitness. In comparison, flies carrying a deletion of the whole nAChR_α6 subunit, the target site of spinosyns, showed an increased tolerance to this class of insecticides but presented almost no fitness deficits.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Aptidão Genética , Resistência a Inseticidas , Neonicotinoides , Receptores Nicotínicos/genética , Animais , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Mutação , Neonicotinoides/toxicidade
9.
Pestic Biochem Physiol ; 166: 104562, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32448417

RESUMO

The buff-tailed bumblebee, Bombus terrestris audax is an important pollinator within both landscape ecosystems and agricultural crops. During their lifetime bumblebees are regularly challenged by various environmental stressors including insecticides. Historically the honey bee (Apis mellifera spp.) has been used as an 'indicator' species for 'standard' ecotoxicological testing, but it has been suggested that it is not always a good proxy for other eusocial or solitary bees. To investigate this, the susceptibility of B. terrestris to selected pesticides within the neonicotinoid, pyrethroid and organophosphate classes was examined using acute insecticide bioassays. Acute oral and topical LD50 values for B. terrestris against these insecticides were broadly consistent with published results for A. mellifera. For the neonicotinoids, imidacloprid was highly toxic, but thiacloprid and acetamiprid were practically non-toxic. For pyrethroids, deltamethrin was highly toxic, but tau-fluvalinate only slightly toxic. For the organophosphates, chlorpyrifos was highly toxic, but coumaphos practically non-toxic. Bioassays using insecticides with common synergists enhanced the sensitivity of B. terrestris to several insecticides, suggesting detoxification enzymes may provide a level of protection against these compounds. The sensitivity of B. terrestris to compounds within three different insecticide classes is similar to that reported for honey bees, with marked variation in sensitivity to different insecticides within the same insecticide class observed in both species. This finding highlights the need to consider each compound within an insecticide class in isolation rather than extrapolating between different insecticides in the same class or sharing the same mode of action.


Assuntos
Inseticidas , Animais , Abelhas , Combinação de Medicamentos , Ecossistema , Glicerol , Salicilatos
10.
Crop Prot ; 138: 105316, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33273750

RESUMO

The cabbage stem flea beetle, Psylliodes chrysocephala L. is a major pest of winter oilseed rape in several European countries. Traditionally, neonicotinoid and pyrethroid insecticides have been widely used for control of P. chrysocephala, but in recent years, following the withdrawal of neonicotinoid insecticide seed treatments, control failures have occurred due to an over reliance on pyrethroids. In line with previous surveys, UK populations of P. chrysocephala were found to exhibit high levels of resistance to the pyrethroid lambda-cyhalothrin. This resistance was suppressed by pre-treatment with the cytochrome P450 inhibitor PBO under laboratory conditions, suggesting that the resistance has a strong metabolic component. The L1014F (kdr) mutation in the voltage-gated sodium channel, which confers relatively low levels (10-20 fold) of resistance to pyrethroids, was also found to be widespread across the UK regions sampled, whereas the L925I (s-kdr) mutation was much less common. The current survey also suggests that higher levels of pyrethroid resistance have spread to the North and West of England, and that resistance levels continue to remain high in the South East.

11.
Eur Biophys J ; 46(7): 675-679, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28070661

RESUMO

The pyrethroid insecticides are a very successful group of compounds that have been used extensively for the control of arthropod pests of agricultural crops and vectors of animal and human disease. Unfortunately, this has led to the development of resistance to the compounds in many species. The mode of action of pyrethroids is known to be via interactions with the voltage-gated sodium channel. Understanding how binding to the channel is affected by amino acid substitutions that give rise to resistance has helped to elucidate the mode of action of the compounds and the molecular basis of their selectivity for insects vs mammals and between insects and other arthropods. Modelling of the channel/pyrethroid interactions, coupled with the ability to express mutant channels in oocytes and study function, has led to knowledge of both how the channels function and potentially how to design novel insecticides with greater species selectivity.


Assuntos
Inseticidas/farmacologia , Piretrinas/farmacologia , Agonistas do Canal de Sódio Disparado por Voltagem/metabolismo , Animais , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Agonistas do Canal de Sódio Disparado por Voltagem/química
12.
Pestic Biochem Physiol ; 142: 1-8, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29107231

RESUMO

We discovered the A301S mutation in the RDL GABA-gated chloride channel of fiprole resistant rice brown planthopper, Nilaparvata lugens populations by DNA sequencing and SNP calling via RNASeq. Ethiprole selection of two field N. lugens populations resulted in strong resistance to both ethiprole and fipronil and resulted in fixation of the A301S mutation, as well as the emergence of another mutation, Q359E in one of the selected strains. To analyse the roles of these mutations in resistance to phenylpyrazoles, three Rdl constructs: wild type, A301S and A301S+Q359E were expressed in Xenopus laevis oocytes and assessed for their sensitivity to ethiprole and fipronil using two-electrode voltage-clamp electrophysiology. Neither of the mutant Rdl subtypes significantly reduced the antagonistic action of fipronil, however there was a significant reduction in response to ethiprole in the two mutated subtypes compared with the wild type. Bioassays with a Drosophila melanogaster strain carrying the A301S mutation showed strong resistance to ethiprole but not fipronil compared to a strain without this mutation, thus further supporting a causal role for the A301S mutation in resistance to ethiprole. Homology modelling of the N. lugens RDL channel did not suggest implications of Q359E for fiprole binding in contrast to A301S located in transmembrane domain M2 forming the channel pore. Synergist bioassays provided no evidence of a role for cytochrome P450s in N. lugens resistance to fipronil and the molecular basis of resistance to this compound remains unknown. In summary this study provides strong evidence that target-site resistance underlies widespread ethiprole resistance in N. lugens populations.


Assuntos
Hemípteros/efeitos dos fármacos , Hemípteros/genética , Proteínas de Insetos/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Mutação de Sentido Incorreto , Receptores de GABA-A/genética , Animais , Sequência de Bases , Hemípteros/metabolismo , Proteínas de Insetos/metabolismo , Pirazóis/farmacologia , Piretrinas/farmacologia , Receptores de GABA-A/metabolismo
13.
Manag Care ; 26(2): 41-48, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28273042

RESUMO

PURPOSE: To understand the perception of intravenous infusions in patients receiving infliximab (Remicade) within the BioAdvance patient support program (PSP). DESIGN: Intravenous infusion of infliximab occurs at approximately 200 clinics across Canada and is managed via the BioAdvance PSP. Patients were invited to complete a 28-question survey on demographics, disease/treatment characteristics, health rating, lifestyle, employment, and perception of intravenous infusions and the BioAdvance program. METHODOLOGY: Analyses were exploratory and descriptive; collected data were self-reported ordinal (Likert scale, unfavorable-to-favorable, 1-10). The Wilcoxon signed-rank test was used to assess statistical significance, and multinomial logistic regression identified predictors of a positive perception of intravenous infusions. RESULTS: 1,712 patients completed the survey. Most respondents had been treated with infliximab for >2 years (58%), had not been previously treated with a biologic (74%), and were receiving treatment for inflammatory bowel disease (76%). Sixty-two percent of patients were employed and most traveled for personal/work reasons (57%) and had a busy/active lifestyle (76%) while attending the BioAdvance clinics. Before treatment, participants rated their perceived favorability of intravenous infusions at 5/10 (median; interquartile range, 5-7); after multiple infusions, their rating increased significantly to 8 (7-9) (P<.001). Regression analysis identified four predictors of a positive infusion experience: French language, favorable ratings of health, accuracy of physician's description, and satisfaction with their BioAdvance coordinator. The vast majority of participants were likely to recommend the BioAdvance PSP. CONCLUSION: The survey results indicate that the majority of patients receiving infliximab have a positive infusion experience within the BioAdvance PSP.


Assuntos
Antirreumáticos/administração & dosagem , Infliximab/administração & dosagem , Infusões Intravenosas , Satisfação do Paciente , Adulto , Canadá , Feminino , Pesquisas sobre Atenção à Saúde , Humanos , Masculino , Pessoa de Meia-Idade
14.
Mol Ecol ; 25(22): 5692-5704, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27748560

RESUMO

Many genes increase coding capacity by alternate exon usage. The gene encoding the insect nicotinic acetylcholine receptor (nAChR) α6 subunit, target of the bio-insecticide spinosad, is one example of this and expands protein diversity via alternative splicing of mutually exclusive exons. Here, we show that spinosad resistance in the tomato leaf miner, Tuta absoluta is associated with aberrant regulation of splicing of Taα6 resulting in a novel form of insecticide resistance mediated by exon skipping. Sequencing of the α6 subunit cDNA from spinosad selected and unselected strains of T. absoluta revealed all Taα6 transcripts of the selected strain were devoid of exon 3, with comparison of genomic DNA and mRNA revealing this is a result of exon skipping. Exon skipping cosegregated with spinosad resistance in survival bioassays, and functional characterization of this alteration using modified human nAChR α7, a model of insect α6, demonstrated that exon 3 is essential for receptor function and hence spinosad sensitivity. DNA and RNA sequencing analyses suggested that exon skipping did not result from genetic alterations in intronic or exonic cis-regulatory elements, but rather was associated with a single epigenetic modification downstream of exon 3a, and quantitative changes in the expression of trans-acting proteins that have known roles in the regulation of alternative splicing. Our results demonstrate that the intrinsic capacity of the α6 gene to generate transcript diversity via alternative splicing can be readily exploited during the evolution of resistance and identifies exon skipping as a molecular alteration conferring insecticide resistance.


Assuntos
Processamento Alternativo , Éxons , Insetos/genética , Resistência a Inseticidas/genética , Receptor Nicotínico de Acetilcolina alfa7/genética , Animais , Combinação de Medicamentos , Humanos , Macrolídeos
15.
J Neurogenet ; 30(3-4): 163-177, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27802784

RESUMO

Ion channels remain the primary target of most of the small molecule insecticides. This review examines how the subunit composition of heterologously expressed receptors determines their insecticide-specific pharmacology and how the pharmacology of expressed receptors differs from those found in the insect nervous system. We find that the insecticide-specific pharmacology of some receptors, like that containing subunits of the Rdl encoded GABA receptor, can be reconstituted with very few of the naturally occurring subunits expressed. In contrast, workers have struggled even to express functional insect nicotinic acetylcholine receptors (nAChRs), and work has therefore often relied upon the expression of vertebrate receptor subunits in their place. We also examine the extent to which insecticide-resistance-associated mutations, such as those in the para encoded voltage-gated sodium channel, can reveal details of insecticide-binding sites and mode of action. In particular, we examine whether mutations are present in the insecticide-binding site and/or at sites that allosterically affect the drug preferred conformation of the receptor. We also discuss the ryanodine receptor as a target for the recently developed diamides. Finally, we examine the lethality of the genes encoding these receptor subunits and discuss how this might determine the degree of conservation of the resistance-associated mutations found.


Assuntos
Inseticidas/farmacologia , Canais Iônicos/efeitos dos fármacos , Animais , Canais Iônicos/genética
16.
Proc Natl Acad Sci U S A ; 110(48): 19460-5, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218582

RESUMO

Host plant shifts of herbivorous insects may be a first step toward sympatric speciation and can create new pests of agriculturally important crops; however, the molecular mechanisms that mediate this process are poorly understood. Certain races of the polyphagous aphid Myzus persicae have recently adapted to feed on tobacco (Myzus persicae nicotianae) and show a reduced sensitivity to the plant alkaloid nicotine and cross-resistance to neonicotinoids a class of synthetic insecticides widely used for control. Here we show constitutive overexpression of a cytochrome P450 (CYP6CY3) allows tobacco-adapted races of M. persicae to efficiently detoxify nicotine and has preadapted them to resist neonicotinoid insecticides. CYP6CY3, is highly overexpressed in M. persicae nicotianae clones from three continents compared with M. persicae s.s. and expression level is significantly correlated with tolerance to nicotine. CYP6CY3 is highly efficient (compared with the primary human nicotine-metabolizing P450) at metabolizing nicotine and neonicotinoids to less toxic metabolites in vitro and generation of transgenic Drosophila expressing CYP6CY3 demonstrate that it confers resistance to both compounds in vivo. Overexpression of CYP6CY3 results from the expansion of a dinucleotide microsatellite in the promoter region and a recent gene amplification, with some aphid clones carrying up to 100 copies. We conclude that the mutations leading to overexpression of CYP6CY3 were a prerequisite for the host shift of M. persicae to tobacco and that gene amplification and microsatellite polymorphism are evolutionary drivers in insect host adaptation.


Assuntos
Adaptação Biológica/genética , Afídeos/enzimologia , Repetições de Dinucleotídeos/genética , Amplificação de Genes/genética , Nicotiana/parasitologia , Polimorfismo Genético/genética , Animais , Afídeos/efeitos dos fármacos , Hidrocarboneto de Aril Hidroxilases/metabolismo , Sequência de Bases , Cromatografia Líquida , Interações Hospedeiro-Parasita , Dados de Sequência Molecular , Mutação/genética , Nicotina/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
17.
Pestic Biochem Physiol ; 131: 1-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27265820

RESUMO

The tomato leafminer, Tuta absoluta, now a major pest of tomato crops worldwide, is primarily controlled using chemical insecticides. Recently, high levels of resistance to the insecticide spinosad have been described in T. absoluta populations in Brazil. Selection of a resistant field-collected strain led to very high levels of resistance to spinosad and cross-resistance to spinetoram, but not to other insecticides that target the nicotinic acetylcholine receptor (nAChR). In this study the mechanisms underlying resistance to spinosad were investigated using toxicological, biochemical and molecular approaches. Inhibition of metabolic enzymes using synergists and biochemical assessment of detoxification enzyme activity provided little evidence of metabolic resistance in the selected strain. Cloning and sequencing of the nAChR α6 subunit from T. absoluta, the spinosad target-site, from susceptible and spinosad-resistant strains were done to investigate the role of a target-site mechanism in resistance. A single nucleotide change was identified in exon 9 of the α6 subunit of the resistant strain, resulting in the replacement of the glycine (G) residue at position 275 observed in susceptible T. absoluta strains with a glutamic acid (E). A high-throughput DNA-based diagnostic assay was developed and used to assess the prevalence of the G275E mutation in 17 field populations collected from different geographical regions of Brazil. The resistant allele was found at low frequency, and in the heterozygous form, in seven of these populations but at much higher frequency and in the homozygous form in a population collected in the Iraquara municipality. The frequency of the mutation was significantly correlated with the mortality of these populations in discriminating dose bioassays. In summary our results provide evidence that the G275E mutation is an important mechanism of resistance to spinosyns in T. absoluta, and may be used as a marker for resistance monitoring in field populations.


Assuntos
Substituição de Aminoácidos/genética , Inseticidas/farmacologia , Macrolídeos/farmacologia , Mariposas/genética , Receptores Nicotínicos/genética , Animais , Combinação de Medicamentos , Resistência a Inseticidas , Mariposas/enzimologia
18.
Parasitol Res ; 114 Suppl 1: S7-18, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26152407

RESUMO

The susceptibility of 12 field-collected isolates and 4 laboratory strains of cat fleas, Ctenocephalides felis was determined by topical application of some of the insecticides used as on-animal therapies to control them. In the tested field-collected flea isolates the LD50 values for fipronil and imidacloprid ranged from 0.09 to 0.35 ng/flea and 0.02 to 0.19 ng/flea, respectively, and were consistent with baseline figures published previously. The extent of variation in response to four pyrethroid insecticides differed between compounds with the LD50 values for deltamethrin ranging from 2.3 to 28.2 ng/flea, etofenprox ranging from 26.7 to 86.7 ng/flea, permethrin ranging from 17.5 to 85.6 ng/flea, and d-phenothrin ranging from 14.5 to 130 ng/flea. A comparison with earlier data for permethrin and deltamethrin implied a level of pyrethroid resistance in all isolates and strains. LD50 values for tetrachlorvinphos ranged from 20.0 to 420.0 ng/flea. The rdl mutation (conferring target-site resistance to cyclodiene insecticides) was present in most field-collected and laboratory strains, but had no discernible effect on responses to fipronil, which acts on the same receptor protein as cyclodienes. The kdr and skdr mutations conferring target-site resistance to pyrethroids but segregated in opposition to one another, precluding the formation of genotypes homozygous for both mutations.


Assuntos
Ctenocephalides/efeitos dos fármacos , Ctenocephalides/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Animais , Regulação da Expressão Gênica , Genótipo , Mutação , Sifonápteros/genética
19.
Pestic Biochem Physiol ; 121: 78-87, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26047114

RESUMO

The first neonicotinoid insecticide, imidacloprid, was launched in 1991. Today this class of insecticides comprises at least seven major compounds with a market share of more than 25% of total global insecticide sales. Neonicotinoid insecticides are highly selective agonists of insect nicotinic acetylcholine receptors and provide farmers with invaluable, highly effective tools against some of the world's most destructive crop pests. These include sucking pests such as aphids, whiteflies, and planthoppers, and also some coleopteran, dipteran and lepidopteran species. Although many insect species are still successfully controlled by neonicotinoids, their popularity has imposed a mounting selection pressure for resistance, and in several species resistance has now reached levels that compromise the efficacy of these insecticides. Research to understand the molecular basis of neonicotinoid resistance has revealed both target-site and metabolic mechanisms conferring resistance. For target-site resistance, field-evolved mutations have only been characterized in two aphid species. Metabolic resistance appears much more common, with the enhanced expression of one or more cytochrome P450s frequently reported in resistant strains. Despite the current scale of resistance, neonicotinoids remain a major component of many pest control programmes, and resistance management strategies, based on mode of action rotation, are of crucial importance in preventing resistance becoming more widespread. In this review we summarize the current status of neonicotinoid resistance, the biochemical and molecular mechanisms involved, and the implications for resistance management.


Assuntos
Resistência a Inseticidas , Inseticidas/farmacologia , Agonistas Nicotínicos/farmacologia , Animais
20.
PLoS Genet ; 6(6): e1000999, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20585623

RESUMO

The aphid Myzus persicae is a globally significant crop pest that has evolved high levels of resistance to almost all classes of insecticide. To date, the neonicotinoids, an economically important class of insecticides that target nicotinic acetylcholine receptors (nAChRs), have remained an effective control measure; however, recent reports of resistance in M. persicae represent a threat to the long-term efficacy of this chemical class. In this study, the mechanisms underlying resistance to the neonicotinoid insecticides were investigated using biological, biochemical, and genomic approaches. Bioassays on a resistant M. persicae clone (5191A) suggested that P450-mediated detoxification plays a primary role in resistance, although additional mechanism(s) may also contribute. Microarray analysis, using an array populated with probes corresponding to all known detoxification genes in M. persicae, revealed constitutive over-expression (22-fold) of a single P450 gene (CYP6CY3); and quantitative PCR showed that the over-expression is due, at least in part, to gene amplification. This is the first report of a P450 gene amplification event associated with insecticide resistance in an agriculturally important insect pest. The microarray analysis also showed over-expression of several gene sequences that encode cuticular proteins (2-16-fold), and artificial feeding assays and in vivo penetration assays using radiolabeled insecticide provided direct evidence of a role for reduced cuticular penetration in neonicotinoid resistance. Conversely, receptor radioligand binding studies and nucleotide sequencing of nAChR subunit genes suggest that target-site changes are unlikely to contribute to resistance to neonicotinoid insecticides in M. persicae.


Assuntos
Afídeos/genética , Sistema Enzimático do Citocromo P-450/genética , Amplificação de Genes/efeitos dos fármacos , Proteínas de Insetos/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Nicotina/farmacologia , Animais , Afídeos/química , Afídeos/efeitos dos fármacos , Sequência de Bases , Sistema Enzimático do Citocromo P-450/química , Dosagem de Genes , Proteínas de Insetos/química , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA