Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Physiol ; 599(3): 863-888, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32358865

RESUMO

Mitochondrial structures were probably observed microscopically in the 1840s, but the idea of oxidative phosphorylation (OXPHOS) within mitochondria did not appear until the 1930s. The foundation for research into energetics arose from Meyerhof's experiments on oxidation of lactate in isolated muscles recovering from electrical contractions in an O2 atmosphere. Today, we know that mitochondria are actually reticula and that the energy released from electron pairs being passed along the electron transport chain from NADH to O2 generates a membrane potential and pH gradient of protons that can enter the molecular machine of ATP synthase to resynthesize ATP. Lactate stands at the crossroads of glycolytic and oxidative energy metabolism. Based on reported research and our own modelling in silico, we contend that lactate is not directly oxidized in the mitochondrial matrix. Instead, the interim glycolytic products (pyruvate and NADH) are held in cytosolic equilibrium with the products of the lactate dehydrogenase (LDH) reaction and the intermediates of the malate-aspartate and glycerol 3-phosphate shuttles. This equilibrium supplies the glycolytic products to the mitochondrial matrix for OXPHOS. LDH in the mitochondrial matrix is not compatible with the cytoplasmic/matrix redox gradient; its presence would drain matrix reducing power and substantially dissipate the proton motive force. OXPHOS requires O2 as the final electron acceptor, but O2 supply is sufficient in most situations, including exercise and often acute illness. Recent studies suggest that atmospheric normoxia may constitute a cellular hyperoxia in mitochondrial disease. As research proceeds appropriate oxygenation levels should be carefully considered.


Assuntos
Mitocôndrias , NAD , Metabolismo Energético , Glicólise , Mitocôndrias/metabolismo , NAD/metabolismo , Oxirredução , Fosforilação Oxidativa
2.
Anal Biochem ; 630: 114319, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34332952

RESUMO

Evidence suggests acetylation of human adenine nucleotide translocase 1 (ANT1) at lysine 23 (Lys23) reduces binding of ADP. Lys23 contributes to the positive charge that facilitates this interaction. This study was undertaken to characterize ANT1 abundance and acetylation by a novel method using small amounts of human skeletal muscle biopsies. Lysates of whole muscle or mitochondria from the same tissue were prepared from needle biopsies of vastus lateralis muscle of healthy volunteers. Lysed proteins were resolved on gels, the section containing ANT1 (surrounding 30 Kd) was excised, digested with trypsin, spiked with labeled unacetylated and acetylated synthetic standard peptides and analyzed by mass spectrometry. Natural logarithm transformation of data linearized ion intensities over a 10-fold range of peptide mass. Coefficients of variation ranged from 7 to 30% for ANT1 abundance and Lys23 acetylation. In three volunteers, ANT1 content was 8.36 ± 0.33 nmol/g wet weight muscle and 0.64 ± 0.05 nmol/mg mitochondria, so mitochondrial content was 13.3 ± 2.4 mg mitochondria per gram muscle. Acetylation of Lys23 averaged 14.3 ± 4.2% and 4.87 ± 1.84% in whole muscle and mitochondria, respectively. This assay makes it possible to assess effects of acetylation on the function of ANT1 in human muscle.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Lisina/metabolismo , Músculo Esquelético/metabolismo , Acetilação , Translocador 1 do Nucleotídeo Adenina/análise , Voluntários Saudáveis , Humanos , Lisina/química , Músculo Esquelético/química
3.
Biochem Biophys Res Commun ; 521(1): 158-163, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31630795

RESUMO

VWA8 is a poorly characterized mitochondrial AAA + ATPase protein. The specific submitochondrial localization of VWA8 remains unclear. The purpose of this study was to determine the specific submitochondrial compartment within which VWA8 resides in order to provide more insight into the function of this protein. Bioinformatics analysis showed that VWA8 has a 34 amino acid N-terminal Matrix-Targeting Signal (MTS) that is similar to those in proteins known to localize to the mitochondrial matrix. Experiments in C2C12 mouse myoblasts using confocal microscopy showed that deletion of the VWA8 MTS (vMTS) resulted in cytosolic, rather than mitochondrial, localization of VWA8. Biochemical analysis using differential sub-fractionation of mitochondria isolated from rat liver showed that VWA8 localizes to the matrix side of inner mitochondrial membrane, similar to the inner mitochondrial membrane protein Electron Transfer Flavoprotein-ubiquinone Oxidoreductase (ETFDH). The results of these experiments show that the vMTS is essential for localization to the mitochondrial matrix and that once there, VWA8 localizes to the matrix side of inner mitochondrial membrane.


Assuntos
Membranas Mitocondriais/metabolismo , Fator de von Willebrand/metabolismo , Animais , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Biochemistry ; 58(49): 4983-4996, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31702900

RESUMO

von Willebrand A domain-containing protein 8 (VWA8) is a poorly characterized, mitochondrial matrix-targeted protein with an AAA ATPase domain and ATPase activity that increases in livers of mice fed a high-fat diet. This study was undertaken to use CRISPR/Cas9 to delete VWA8 in cultured mouse hepatocytes and gain insight into its function. Unbiased omics techniques and bioinformatics were used to guide subsequent assays, including the assessment of oxidative stress and the determination of bioenergetic capacity. Metabolomics analysis showed VWA8 null cells had higher levels of oxidative stress and protein degradation; assays of hydrogen peroxide production revealed higher levels of production of reactive oxygen species (ROS). Proteomics and transcriptomics analyses showed VWA8 null cells had higher levels of expression of mitochondrial proteins (electron transport-chain Complex I, ATP synthase), peroxisomal proteins, and lipid transport proteins. The pattern of higher protein abundance in the VWA8 null cells could be explained by a higher level of hepatocyte nuclear factor 4 α (HNF4α) expression. Bioenergetic assays showed higher rates of carbohydrate oxidation and mitochondrial and nonmitochondrial lipid oxidation in intact and permeabilized cells. Inhibitor assays localized sites of ROS production to peroxisomes and NOX1/4. The rescue of VWA8 protein restored the wild-type phenotype, and treatment with antioxidants decreased the level of HNF4α expression. Thus, loss of VWA8 produces a mitochondrial defect that may be sensed by NOX4, leading to an increase in the level of ROS that results in a higher level of HNF4α. The compensatory HNF4α response results in a higher oxidative capacity and an even higher level of ROS production. We hypothesize that VWA8 is an AAA ATPase protein that plays a role in mitochondrial protein quality.


Assuntos
Adenosina Trifosfatases/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Estresse Oxidativo , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Deleção de Genes , Fator 4 Nuclear de Hepatócito/genética , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Biochem Biophys Res Commun ; 487(3): 545-551, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28414126

RESUMO

The VWA8 gene was first identified by the Kazusa cDNA project and named KIAA0564. Based on the observation, by similarity, that the protein encoded by KIAA0564 contains a Von Willebrand Factor 8 domain, KIAA0564 was named Von Willebrand Domain-containing Protein 8 (VWA8). The function of VWA8 protein is almost unknown. The purpose of this study was to characterize the tissue distribution, cellular location, and function of VWA8. In mice VWA8 protein was mostly distributed in liver, kidney, heart, pancreas and skeletal muscle, and is present as a long isoform and a shorter splice variant (VWA8a and VWA8b). VWA8 protein and mRNA were elevated in mouse liver in response to high fat feeding. Sequence analysis suggests that VWA8 has a mitochondrial targeting sequence and domains responsible for ATPase activity. VWA8 protein was targeted exclusively to mitochondria in mouse AML12 liver cells, and this was prevented by deletion of the targeting sequence. Moreover, the VWA8 short isoform overexpressed in insect cells using a baculovirus construct had in vitro ATPase activity. Deletion of the Walker A motif or Walker B motif in VWA8 mostly blocked ATPase activity, suggesting Walker A motif or Walker B motif are essential to the ATPase activity of VWA8. Finally, homology modeling suggested that VWA8 may have a structure most confidently similar to dynein motor proteins.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Animais , Células Cultivadas , Biologia Computacional , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Biochemistry ; 53(23): 3817-29, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24884163

RESUMO

Proteomics techniques have revealed that lysine acetylation is abundant in mitochondrial proteins. This study was undertaken (1) to determine the relationship between mitochondrial protein acetylation and insulin sensitivity in human skeletal muscle, identifying key acetylated proteins, and (2) to use molecular modeling techniques to understand the functional consequences of acetylation of adenine nucleotide translocase 1 (ANT1), which we found to be abundantly acetylated. Eight lean and eight obese nondiabetic subjects had euglycemic clamps and muscle biopsies for isolation of mitochondrial proteins and proteomics analysis. A number of acetylated mitochondrial proteins were identified in muscle biopsies. Overall, acetylation of mitochondrial proteins was correlated with insulin action (r = 0.60; P < 0.05). Of the acetylated proteins, ANT1, which catalyzes ADP-ATP exchange across the inner mitochondrial membrane, was acetylated at lysines 10, 23, and 92. The extent of acetylation of lysine 23 decreased following exercise, depending on insulin sensitivity. Molecular dynamics modeling and ensemble docking simulations predicted the ADP binding site of ANT1 to be a pocket of positively charged residues, including lysine 23. Calculated ADP-ANT1 binding affinities were physiologically relevant and predicted substantial reductions in affinity upon acetylation of lysine 23. Insertion of these derived binding affinities as parameters into a complete mathematical description of ANT1 kinetics predicted marked reductions in adenine nucleotide flux resulting from acetylation of lysine 23. Therefore, acetylation of ANT1 could have dramatic physiological effects on ADP-ATP exchange. Dysregulation of acetylation of mitochondrial proteins such as ANT1 therefore could be related to changes in mitochondrial function that are associated with insulin resistance.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Difosfato de Adenosina/metabolismo , Resistência à Insulina , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/enzimologia , Fosforilação Oxidativa , Processamento de Proteína Pós-Traducional , Acetilação , Translocador 1 do Nucleotídeo Adenina/química , Difosfato de Adenosina/química , Adulto , Sítios de Ligação , Índice de Massa Corporal , Regulação para Baixo , Feminino , Humanos , Lisina/química , Lisina/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Atividade Motora , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidade/enzimologia , Obesidade/metabolismo
7.
J Exp Biol ; 217(Pt 11): 1993-2003, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24625643

RESUMO

Mammals exponentially increase the rate of carbohydrate oxidation as exercise intensity rises, while birds combust lipid almost exclusively while flying at high percentages of aerobic capacity. The fuel oxidized by contracting muscle depends on many factors: whole-body fuel storage mass, mobilization, blood transport, cellular uptake, and substrate selection at the level of the mitochondrion. We examined the fuel preferences of mitochondria isolated from mammalian and avian locomotory muscles using two approaches. First, the influence of substrates on the kinetics of respiration (Km,ADP and Vmax) was evaluated. For all substrates and combinations, Km,ADP was generally twofold higher in avian mitochondria. Second, fuel competition between pyruvate, glutamate and/or palmitoyl-l-carnitine at three levels of ATP free energy was determined using the principle of mass balance and the measured rates of O2 consumption and metabolite accumulation/utilization. Avian mitochondria strongly spared pyruvate from oxidation when another substrate was available and fatty acid was the dominant substrate, regardless of energy state. Mammalian mitochondria exhibited some preference for fatty acid over pyruvate at lower flux (higher energy state), but exhibited a much greater tendency to select pyruvate and glutamate when available. Studies in sonicated mitochondria revealed twofold higher electron transport chain electron conductance in avian mitochondria. We conclude that substantial fuel selection occurs at the level of the mitochondrial matrix and that avian flight muscle mitochondria are particularly biased toward the selection of fatty acid, possibly by facilitating high ß-oxidation flux by maintaining a more oxidized matrix.


Assuntos
Metabolismo Energético/fisiologia , Locomoção/fisiologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Passeriformes/metabolismo , Animais , Contração Muscular , Consumo de Oxigênio , Esforço Físico , Ratos
8.
Biochemistry ; 52(16): 2793-809, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23547908

RESUMO

Calcium is believed to regulate mitochondrial oxidative phosphorylation, thereby contributing to the maintenance of cellular energy homeostasis. Skeletal muscle, with an energy conversion dynamic range of up to 100-fold, is an extreme case for evaluating the cellular balance of ATP production and consumption. This study examined the role of Ca(2+) in the entire oxidative phosphorylation reaction network in isolated skeletal muscle mitochondria and attempted to extrapolate these results back to the muscle, in vivo. Kinetic analysis was conducted to evaluate the dose-response effect of Ca(2+) on the maximal velocity of oxidative phosphorylation (V(maxO)) and the ADP affinity. Force-flow analysis evaluated the interplay between energetic driving forces and flux to determine the conductance, or effective activity, of individual steps within oxidative phosphorylation. Measured driving forces [extramitochondrial phosphorylation potential (ΔG(ATP)), membrane potential, and redox states of NADH and cytochromes b(H), b(L), c(1), c, and a,a(3)] were compared with flux (oxygen consumption) at 37 °C; 840 nM Ca(2+) generated an ~2-fold increase in V(maxO) with no change in ADP affinity (~43 µM). Force-flow analysis revealed that Ca(2+) activation of V(maxO) was distributed throughout the oxidative phosphorylation reaction sequence. Specifically, Ca(2+) increased the conductance of Complex IV (2.3-fold), Complexes I and III (2.2-fold), ATP production/transport (2.4-fold), and fuel transport/dehydrogenases (1.7-fold). These data support the notion that Ca(2+) activates the entire muscle oxidative phosphorylation cascade, while extrapolation of these data to the exercising muscle predicts a significant role of Ca(2+) in maintaining cellular energy homeostasis.


Assuntos
Cálcio/metabolismo , Mitocôndrias Musculares/metabolismo , Fosforilação Oxidativa , Difosfato de Adenosina/metabolismo , Animais , Cálcio/farmacologia , Respiração Celular , Citocromos/metabolismo , Relação Dose-Resposta a Droga , Técnicas In Vitro , Cinética , Potencial da Membrana Mitocondrial , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Suínos , Termodinâmica
9.
Front Physiol ; 14: 1208186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485059

RESUMO

Introduction: Many investigators have attempted to define the molecular nature of changes responsible for insulin resistance in muscle, but a molecular approach may not consider the overall physiological context of muscle. Because the energetic state of ATP (ΔGATP) could affect the rate of insulin-stimulated, energy-consuming processes, the present study was undertaken to determine whether the thermodynamic state of skeletal muscle can partially explain insulin sensitivity and fuel selection independently of molecular changes. Methods: 31P-MRS was used with glucose clamps, exercise studies, muscle biopsies and proteomics to measure insulin sensitivity, thermodynamic variables, mitochondrial protein content, and aerobic capacity in 16 volunteers. Results: After showing calibrated 31P-MRS measurements conformed to a linear electrical circuit model of muscle nonequilibrium thermodynamics, we used these measurements in multiple stepwise regression against rates of insulin-stimulated glucose disposal and fuel oxidation. Multiple linear regression analyses showed 53% of the variance in insulin sensitivity was explained by 1) VO2max (p = 0.001) and the 2) slope of the relationship of ΔGATP with the rate of oxidative phosphorylation (p = 0.007). This slope represents conductance in the linear model (functional content of mitochondria). Mitochondrial protein content from proteomics was an independent predictor of fractional fat oxidation during mild exercise (R2 = 0.55, p = 0.001). Conclusion: Higher mitochondrial functional content is related to the ability of skeletal muscle to maintain a greater ΔGATP, which may lead to faster rates of insulin-stimulated processes. Mitochondrial protein content per se can explain fractional fat oxidation during mild exercise.

10.
Metab Syndr Relat Disord ; 21(1): 16-24, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36318809

RESUMO

Background: Resting skeletal muscle in insulin resistance prefers to oxidize carbohydrate rather than lipid, exhibiting metabolic inflexibility. Although this is established in resting muscle, complexities involved in directly measuring fuel oxidation using indirect calorimetry across a muscle bed have limited studies of this phenomenon in working skeletal muscle. During mild exercise and at rest, whole-body indirect calorimetry imperfectly estimates muscle fuel oxidation. We provide evidence that a method termed "ΔRER" can reasonably estimate fuel oxidation in skeletal muscle activated by exercise. Methods: Completely sedentary volunteers (n = 20, age 31 ± 2 years, V̇O2peak 24.4 ± 1.5 mL O2 per min/kg) underwent glucose clamps to determine insulin sensitivity and graded exercise consisting of three periods of mild steady-state cycle ergometry (15, 30, 45 watts, or 10%, 20%, and 30% of maximum power) with measurements of whole-body gas exchange. ΔRER, the RER in working muscle, was calculated as (V̇CO2exercise -V̇CO2rest)/(V̇O2exercise - V̇O2rest), from which the fraction of fuel accounted for by lipid was estimated. Results: Lactate levels were low and stable during steady-state exercise. Muscle biopsies were used to estimate mitochondrial content. The rise of V̇O2 at onset of exercise followed a monoexponential function, with a time constant of 51 ± 7 sec, typical of skeletal muscle; the average O2 cost of work was about 12 mL O2/watt/min, representing a mechanical efficiency of about 24%. At work rates of 30 or 45 watts, active muscle relied predominantly on carbohydrate, independent of insulin sensitivity within this group of very sedentary volunteers. Conclusions: The fraction of muscle fuel oxidation from fat was predicted by power output (P < 0.001) and citrate synthase activity (P < 0.05), indicating that low mitochondrial content may be the main driver of fuel choice in sedentary people, independent of insulin sensitivity.


Assuntos
Resistência à Insulina , Humanos , Adulto , Carboidratos , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Lipídeos , Consumo de Oxigênio
11.
J Exp Biol ; 215(Pt 12): 2039-50, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22623192

RESUMO

Flying birds couple a high daily energy turnover with double-digit millimolar blood glucose concentrations and insulin resistance. Unlike mammalian muscle, flight muscle predominantly relies on lipid oxidation during locomotion at high fractions of aerobic capacity, and birds outlive mammals of similar body mass by a factor of three or more. Despite these intriguing functional differences, few data are available comparing fuel oxidation and free radical production in avian and mammalian skeletal muscle mitochondria. Thus we isolated mitochondria from English sparrow pectoralis and rat mixed hindlimb muscles. Maximal O(2) consumption and net H(2)O(2) release were measured in the presence of several oxidative substrate combinations. Additionally, NAD- and FAD-linked electron transport chain (ETC) capacity was examined in sonicated mitochondria. Sparrow mitochondria oxidized palmitoyl-l-carnitine 1.9-fold faster than rat mitochondria and could not oxidize glycerol-3-phosphate, while both species oxidized pyruvate, glutamate and malate-aspartate shuttle substrates at similar rates. Net H(2)O(2) release was not significantly different between species and was highest when glycolytic substrates were oxidized. Sonicated sparrow mitochondria oxidized NADH and succinate over 1.8 times faster than rat mitochondria. The high ETC catalytic potential relative to matrix substrate dehydrogenases in sparrow mitochondria suggests a lower matrix redox potential is necessary to drive a given O(2) consumption rate. This may contribute to preferential reliance on lipid oxidation, which may result in lower in vivo reactive oxygen species production in birds compared with mammals.


Assuntos
Mitocôndrias Musculares/metabolismo , Músculos Peitorais/metabolismo , Pardais/metabolismo , Animais , Citrato (si)-Sintase/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
12.
Biochem Biophys Rep ; 26: 100928, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33665377

RESUMO

VWA8 (Von Willebrand A Domain Containing Protein 8) is a AAA+ ATPase that is localized to the mitochondrial matrix and is widely expressed in highly energetic tissues. Originally found to be higher in abundance in livers of mice fed a high fat diet, deletion of the VWA8 gene in differentiated mouse AML12 hepatocytes unexpectedly produced a phenotype of higher mitochondrial and nonmitochondrial oxidative metabolism, higher ROS (reactive oxygen species) production mainly from NADPH oxidases, and increased HNF4a expression. The purposes of this study were first, to determine whether higher mitochondrial oxidative capacity in VWA8 null hepatocytes is the product of higher capacity in all aspects of the electron transport chain and oxidative phosphorylation, and second, the density of cristae in mitochondria and mitochondrial content was measured to determine if higher mitochondrial oxidative capacity is accompanied by greater cristae area and mitochondrial abundance. Electron transport chain complexes I, II, III, and IV activities all were higher in hepatocytes in which the VWA8 gene had been deleted using CRISPR/Cas9. A comparison of abundance of proteins in electron transport chain complexes I, III and ATP synthase previously determined using an unbiased proteomics approach in hepatocytes in which VWA8 had been deleted showed agreement with the activity assays. Mitochondrial cristae, the site where electron transport chain complexes are located, were quantified using electron microscopy and stereology. Cristae density, per mitochondrial area, was almost two-fold higher in the VWA8 null cells (P < 0.01), and mitochondrial area was two-fold higher in the VWA8 null cells (P < 0.05). The results of this study allow us to conclude that despite sustained, higher ROS production in VWA8 null cells, a global mitochondrial compensatory response was maintained, resulting in overall higher mitochondrial oxidative capacity.

13.
Top Stroke Rehabil ; 15(3): 218-26, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18647726

RESUMO

PURPOSE: Muscle energy metabolism is associated with speed, endurance, and effort during walking, yet data regarding muscle metabolism during walking in persons with poststroke hemiparesis have not been published. The primary purpose of this study was to compare the energy metabolism during overground walking in persons with poststroke hemiparesis to controls. The secondary purpose was to determine whether the walking behavior of persons with poststroke hemiparesis conforms to the fuel selection patterns previously observed in controls. METHOD: O2 consumption and CO2 production were measured as 7 individuals with poststroke hemiparesis and 7 age-matched controls walked at self-selected preferred and fast speeds. Indirect calorimetry was used to measure fuel oxidation. RESULTS: Walking speeds and economy were lower in the clinical cohort, although VO2 and fuel oxidation were consistent between groups. Fat was the dominant fuel source at preferred speeds; whereas, carbohydrate rates increased substantially at fast speeds. CONCLUSIONS: Within each condition, similar contributions of fat and carbohydrate were observed despite a wide disparity in speeds. It is hypothesized that fuel selection contributed to preferred walking speeds in the individuals with poststroke hemiparesis and that high rates of carbohydrate oxidation may have prevented higher, more functional, preferred walking speeds.


Assuntos
Músculos/metabolismo , Paresia/metabolismo , Acidente Vascular Cerebral/complicações , Caminhada/fisiologia , Metabolismo dos Carboidratos/fisiologia , Metabolismo Energético/fisiologia , Feminino , Humanos , Masculino , Compostos de Oxigênio , Paresia/etiologia
15.
Biochem Biophys Rep ; 6: 101-107, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27092336

RESUMO

Skeletal muscle mitochondria are arranged as a reticulum. Insight into the functional characteristics of such structure is achieved by viewing the network as consisting of "subsarcolemmal" (SS) and "intermyofibrillar" (IMF) regions. During the decades, most, but not all, published studies have reported higher (sometimes over 2-fold) enzyme and enzyme-pathway protein-specific activities in IMF compared to SS mitochondria. We tested the hypothesis that non-mitochondrial protein contamination might account for much of the apparently lower specific activities of isolated SS mitochondria. Mouse gastrocnemii (n = 6) were suspended in isolation medium, minced, and homogenized according to procedures typically used to isolate SS mitochondria. However, the supernatant fraction, collected after the first slow-speed (800×g) centrifugation, was divided equally: one sample was exposed to nagarse (MITO+), while the other was not (MITO-). Nagarse treatment reduced total protein yield by 25%, while it increased protein-specific respiration rates (nmol O2 min-1 mg-1), by 38% under "resting" (state 4) and by 84% under maximal (state 3) conditions. Nagarse therefore increased the respiratory control ratio (state 3/state 4) by 30%. In addition, the ADP/O ratio was increased by 9% and the activity of citrate synthase (U/mg) was 49% higher. Mass spectrometry analysis indicated that the MITO+ preparation contained less contamination from non-mitochondrial proteins. We conclude that nagarse treatment of SS mitochondria removes not only non-mitochondrial proteins but also the protein of damaged mitochondria, improves indices of functional integrity, and the resulting protein-specific activities.

16.
Med Sci Sports Exerc ; 48(6): 990-1000, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26807634

RESUMO

Mitochondrial oxidative phosphorylation is the primary source of cellular energy transduction in mammals. This energy conversion involves dozens of enzymatic reactions, energetic intermediates, and the dynamic interactions among them. With the goal of providing greater insight into the complex thermodynamics and kinetics ("thermokinetics") of mitochondrial energy transduction, a simple hydraulic analog model of oxidative phosphorylation is presented. In the hydraulic model, water tanks represent the forward and back "pressures" exerted by thermodynamic driving forces: the matrix redox potential (ΔGredox), the electrochemical potential for protons across the mitochondrial inner membrane (ΔGH), and the free energy of adenosine 5'-triphosphate (ATP) (ΔGATP). Net water flow proceeds from tanks with higher water pressure to tanks with lower pressure through "enzyme pipes" whose diameters represent the conductances (effective activities) of the proteins that catalyze the energy transfer. These enzyme pipes include the reactions of dehydrogenase enzymes, the electron transport chain (ETC), and the combined action of ATP synthase plus the ATP-adenosine 5'-diphosphate exchanger that spans the inner membrane. In addition, reactive oxygen species production is included in the model as a leak that is driven out of the ETC pipe by high pressure (high ΔGredox) and a proton leak dependent on the ΔGH for both its driving force and the conductance of the leak pathway. Model water pressures and flows are shown to simulate thermodynamic forces and metabolic fluxes that have been experimentally observed in mammalian skeletal muscle in response to acute exercise, chronic endurance training, and reduced substrate availability, as well as account for the thermokinetic behavior of mitochondria from fast- and slow-twitch skeletal muscle and the metabolic capacitance of the creatine kinase reaction.


Assuntos
Mitocôndrias/metabolismo , Modelos Biológicos , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Creatina Quinase/metabolismo , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Humanos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Fosfocreatina/metabolismo , Condicionamento Físico Humano , Resistência Física/fisiologia
17.
Metabolism ; 54(6): 793-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15931617

RESUMO

Human adults walk at a characteristic speed, but the mechanisms responsible for this ubiquitous and reproducible behavior remain unknown. In this study, preferred walking speed (PWS) was 4.7 +/- 0.1 km h -1 in 12 overnight-fasted adults, mean age 30.0 +/- 2.6 years. Indirect calorimetry was used to measure fuel oxidation during level treadmill walking from 3.2 to 7.2 km h -1 progressively increased at increments of 0.8 km h -1 and 10.0-min intervals. Corroborating many previous reports, the O2 cost of transport (mL O2 kg -1 km -1 ) was numerically lowest at 4.8 km h -1 , near PWS, but was not significantly different than 5.6 km h -1 . The impact of walking speed on the fuel selection of skeletal muscle was much more dramatic. At speeds less than or equal to PWS, muscle carbohydrate (CHO) oxidation rates were quite low, in the range that could be matched by gluconeogenesis. Above 4.8 km h -1 , CHO oxidation rate increased abruptly and tracked the perception of effort (RPE). Stepwise linear regression revealed that CHO oxidation explained 70% of the variance in RPE, and speed provided an additional 4%. In contrast, the other variables included in the analysis, fat oxidation rate, heart rate, and O2 cost of transport, contributed no additional explained variance in RPE. We conclude that PWS is just below a threshold speed, above which CHO oxidation abruptly increases. The central nervous system may be guided by the perception of effort in selecting a PWS that minimizes dependence on CHO oxidation. We further conclude that skeletal muscle metabolic control is an important factor to be taken into account by the central nervous system motor control of human locomotion.


Assuntos
Metabolismo dos Carboidratos , Metabolismo Energético , Caminhada/fisiologia , Trifosfato de Adenosina/biossíntese , Adulto , Humanos , Ácido Láctico/sangue , Oxirredução , Consumo de Oxigênio
18.
IEEE Trans Neural Syst Rehabil Eng ; 12(1): 32-42, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15068185

RESUMO

We investigated a novel treatment paradigm for developing functional ambulation in wheelchair-dependent individuals with chronic, incomplete spinal-cord injury. By coordinating epidural stimulation of the dorsal structures of the spinal cord with partial weight bearing treadmill therapy, we observed improvement in treadmill and over-ground ambulation in an individual with chronic incomplete tetraplegia. The application of partial weight-bearing therapy alone was not sufficient to achieve functional ambulation over ground, though treadmill ambulation improved significantly. Combining epidural spinal-cord stimulation (ESCS, T10-T12 vertebral levels) with partial weight-bearing therapy resulted in further improvement during treadmill ambulation. Moreover, the combination of therapies facilitated the transfer of the learned gait into over ground ambulation. Performance improvements were elicited by applying continuous, charge-balanced, monophasic pulse trains at a frequency of 40-60 Hz, a pulse duration of 800 micros, and an amplitude determined by the midpoint (50%) between the sensory and motor threshold values. The participant initially reported a reduction in sense of effort for over ground walking from 8/10 to 3/10 (Borg scale), and was able to double his walking speed. After several weeks of over ground training, he reached maximum walking speeds of 0.35 m/s, and was able to ambulate over 325 m. We propose that ESCS facilitated locomotor recovery in this patient by augmenting the use-dependent plasticity created by partial weight bearing therapy. Confirmation of these promising results in a controlled study of groups of spinal-cord-injured subjects is warranted.


Assuntos
Terapia por Estimulação Elétrica/métodos , Eletrodos Implantados , Terapia por Exercício/métodos , Marcha , Quadriplegia/fisiopatologia , Quadriplegia/reabilitação , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/fisiopatologia , Adaptação Fisiológica , Adulto , Terapia Combinada , Espaço Epidural , Humanos , Perna (Membro)/inervação , Perna (Membro)/fisiopatologia , Contração Muscular , Resultado do Tratamento , Suporte de Carga
20.
Med Sci Sports Exerc ; 44(3): 397-405, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21857373

RESUMO

PURPOSE: Three to five consecutive days of endurance exercise can protect the heart against an ischemia-reperfusion (IR) insult. However, the mechanisms responsible for this exercise-mediated cardioprotection remain unknown. Given the important role that mitochondria play in IR-induced cardiac myocyte injury, we hypothesized that exercise training promotes cardioprotection, at least in part, by increasing mitochondrial antioxidants, preventing mitochondrial release of reactive oxygen species, and protecting cardiac mitochondria against IR-induced oxidative damage and functional impairment. METHODS: To test our hypothesis, Sprague-Dawley rats were assigned to either sedentary (n = 16) or exercise-trained (n = 16) groups. Exercise-trained animals performed 5 d of treadmill running for 60 min·d(-1) at 30 m·s(-1). Hearts were excised from sedentary and exercised-trained animals and were either perfused for 80 min or exposed to 40 min of global ischemia followed by 45 min of reperfusion by using an ex vivo isolated working heart model. After the protocol, cardiac subsarcolemmal and intermyofibrillar mitochondria were isolated and used to determine respiratory control ratio, reactive oxygen species emission, and indices of oxidative stress and apoptosis. RESULTS: Our results support our hypothesis because exercise training protected both cardiac subsarcolemmal and intermyofibrillar mitochondria from IR-induced uncoupling and oxidative damage. Specifically, the levels of cardiac mitochondrial 4-hydroxynonenal-conjugated proteins were elevated in hearts from sedentary animals exposed to IR compared with cardiac mitochondria isolated from exercise-trained animals. Exercise also resulted in an increase in mitochondrial antioxidant enzymes (copper-zinc superoxide dismutase, manganese superoxide dismutase, and glutathione peroxidase) and prevented the IR-induced release of proapoptotic proteins from the mitochondria. CONCLUSIONS: Collectively, these novel findings reveal that exercise-induced cardioprotection is mediated, at least in part, through mitochondrial adaptations resulting in a mitochondrial phenotype that resists IR-induced damage.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Condicionamento Físico Animal , Traumatismo por Reperfusão/metabolismo , Análise de Variância , Animais , Apoptose , Western Blotting , Masculino , Mitocôndrias Cardíacas/enzimologia , Contração Miocárdica/fisiologia , Estresse Oxidativo , Fosforilação , Resistência Física/fisiologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA