RESUMO
Historically, complement disorders have been attributed to immunodeficiency associated with severe or frequent infection. More recently, however, complement has been recognized for its role in inflammation, autoimmune disorders, and vision loss. This paradigm shift requires a fundamental change in how complement testing is performed and interpreted. Here, we provide an overview of the complement pathways and summarize recent literature related to hereditary and acquired angioedema, infectious diseases, autoimmunity, and age-related macular degeneration. The impact of complement dysregulation in atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria, and C3 glomerulopathies is also described. The advent of therapeutics such as eculizumab and other complement inhibitors has driven the need to more fully understand complement to facilitate diagnosis and monitoring. In this report, we review analytical methods and discuss challenges for the clinical laboratory in measuring this complex biochemical system.
Assuntos
Proteínas do Sistema Complemento/análise , Complemento C5/antagonistas & inibidores , Proteínas do Sistema Complemento/deficiência , Proteínas do Sistema Complemento/fisiologia , HumanosRESUMO
OBJECTIVE: Using candidate gene approach, we have investigated the effect of single nucleotide polymorphism (SNP) in genes related to lipid metabolism and atherosclerosis on dyslipidemia and atorvastatin response. METHODS: The study included 157 patients treated with atorvastatin and 145 controls. Genomic DNA was isolated and genotyped using SNPlex technology. RESULTS: Allele and genotype disease association test revealed that APOB rs693 (OR: 2.2 [1.5-3.2], p=0.0001) and CD36 rs1984112 (OR: 3.7 [1.9-7.0], p=0.0002) SNPs were independent risk factors for hypercholesterolemia. Only APOB rs693 T variant allele was associated with increased LDL cholesterol levels (>160mg/dL). After atorvastatin treatment (10mg/day/4weeks), LIPC -514T allele was positively associated with LDL cholesterol reduction. CONCLUSION: The current study reinforces the current knowledge that carrying APOB rs693 is an independent risk factor for dyslipidemia and higher LDL levels. Furthermore, we found that a variant of CD36 was associated with dyslipidemia as a risk (rs1984112) factor. Finally, atorvastatin response could be predicted by LIPC -514C>T SNP and physical activity. In conclusion, our data evidences the contribution of genetic markers and their interaction with environmental factor in the variability of statin response.