Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 94(11): 4703-4711, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35276049

RESUMO

Modern mass spectrometry techniques produce a wealth of spectral data, and although this is an advantage in terms of the richness of the information available, the volume and complexity of data can prevent a thorough interpretation to reach useful conclusions. Application of molecular formula prediction (MFP) to produce annotated lists of ions that have been filtered by their elemental composition and considering structural double bond equivalence are widely used on high resolving power mass spectrometry datasets. However, this has not been applied to secondary ion mass spectrometry data. Here, we apply this data interpretation approach to 3D OrbiSIMS datasets, testing it for a series of increasingly complex samples. In an organic on inorganic sample, we successfully annotated the organic contaminant overlayer separately from the substrate. In a more challenging purely organic human serum sample we filtered out both proteins and lipids based on elemental compositions, 226 different lipids were identified and validated using existing databases, and we assigned amino acid sequences of abundant serum proteins including albumin, fibronectin, and transferrin. Finally, we tested the approach on depth profile data from layered carbonaceous engine deposits and annotated previously unidentified lubricating oil species. Application of an unsupervised machine learning method on filtered ions after performing MFP from this sample uniquely separated depth profiles of species, which were not observed when performing the method on the entire dataset. Overall, the chemical filtering approach using MFP has great potential in enabling full interpretation of complex 3D OrbiSIMS datasets from a plethora of material types.


Assuntos
Lipídeos , Espectrometria de Massa de Íon Secundário , Bases de Dados Factuais , Humanos , Íons/química
2.
Analyst ; 147(17): 3854-3866, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35904202

RESUMO

Carbonaceous deposits are ubiquitous, being formed on surfaces in engines, fuel systems and on catalysts operating at high temperatures for hydrocarbon transformations. In internal combustion engines, their formation negatively affects worldwide vehicle emissions and fuel economy, leading to premature deaths and environmental damage. Deposit composition and formation pathways are poorly understood due to their insolubility and the intrinsic complexity of their layered carbonaceous matrix. Here, we apply the in situ high mass resolving power capabilities of 3D Orbitrap secondary ion mass spectrometry (3D OrbiSIMS) argon cluster depth profiling on 16 lab grown deposits and evidence common molecular distributions in deposit depth and in positions relative to the combustion chamber. We observe the products of the growth of both planar and curved polycyclic aromatic hydrocarbons to form small fullerenes over time in the engine and propose possible formation pathways which explain the molecular distributions observed. These include alkyl scission, cyclisation of aliphatic side chains and hydrogen abstraction C2H2 addition to form larger aromatic structures. We apply this pathway to previously unidentified nitrogen containing structures in deposits including quinolines and carbazoles. For the first time, 3D OrbiSIMS results were compared and validated with data from atmospheric pressure matrix assisted laser desorption ionization MS. The comprehensive characterization provided will help the development of a new generation of chemical additives to reduce deposits, and thus improve vehicle emissions and global air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Hidrocarbonetos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise
3.
ACS Appl Mater Interfaces ; 12(45): 51026-51035, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33121243

RESUMO

Internal combustion engines are used heavily in diverse applications worldwide. Achieving the most efficient operation is key to improving air quality as society moves to a decarbonized energy system. Insoluble deposits that form within internal combustion engine components including fuel injectors and filters negatively impact CO2 and pollutant emissions. Understanding the composition, origins, and formation mechanisms of these complex materials will be key to their mitigation however, previous attempts only afforded nondiagnostic chemical assignments and limited knowledge toward this. Here, we uncover the identity and spatial distribution of molecular species from a gasoline direct injector, diesel injector, and filter deposit in situ using a new hyphenation of secondary ion mass spectrometry and the state-of-the-art Orbitrap mass analyzer (3D OrbiSIMS) and elemental analysis. Through a high mass resolving power and tandem MS we unambiguously uncovered the identity, distribution, and origin of species including alkylbenzyl sulfonates and provide evidence of deposit formation mechanisms including formation of longer chain sulfonates at the gasoline deposit's surface as well as aromatization to form polycyclic aromatic hydrocarbons up to C66H20, which were prevalent in the lower depth of this deposit. Inorganic salts contributed significantly to the diesel injector deposit throughout its depth, suggesting contamination over multiple fueling cycles. Findings will enable several strategies to mitigate these insoluble materials such as implementing stricter worldwide fuel specifications, modifying additives with adverse reactivity, and synthesizing new fuel additives to solubilize deposits in the engine, thereby leading to less polluting vehicles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA