Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 40(9): 2279-2292, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32611241

RESUMO

OBJECTIVE: Recruitment of neutrophils and formation of neutrophil extracellular traps (NETs) contribute to lethality in acute mesenteric infarction. To study the impact of the gut microbiota in acute mesenteric infarction, we used gnotobiotic mouse models to investigate whether gut commensals prime the reactivity of neutrophils towards formation of neutrophil extracellular traps (NETosis). Approach and Results: We applied a mesenteric ischemia-reperfusion (I/R) injury model to germ-free (GF) and colonized C57BL/6J mice. By intravital imaging, we quantified leukocyte adherence and NET formation in I/R-injured mesenteric venules. Colonization with gut microbiota or monocolonization with Escherichia coli augmented the adhesion of leukocytes, which was dependent on the TLR4 (Toll-like receptor-4)/TRIF (TIR-domain-containing adapter-inducing interferon-ß) pathway. Although neutrophil accumulation was decreased in I/R-injured venules of GF mice, NETosis following I/R injury was significantly enhanced compared with conventionally raised mice or mice colonized with the minimal microbial consortium altered Schaedler flora. Also ex vivo, neutrophils from GF and antibiotic-treated mice showed increased LPS (lipopolysaccharide)-induced NETosis. Enhanced TLR4 signaling in GF neutrophils was due to elevated TLR4 expression and augmented IRF3 (interferon regulatory factor-3) phosphorylation. Likewise, neutrophils from antibiotic-treated conventionally raised mice had increased NET formation before and after ischemia. Increased NETosis in I/R injury was abolished in conventionally raised mice deficient in the TLR adaptor TRIF. In support of the desensitizing influence of enteric LPS, treatment of GF mice with LPS via drinking water diminished LPS-induced NETosis in vitro and in the mesenteric I/R injury model. CONCLUSIONS: Collectively, our results identified that the gut microbiota suppresses NETing neutrophil hyperreactivity in mesenteric I/R injury, while ensuring immunovigilance by enhancing neutrophil recruitment.


Assuntos
Armadilhas Extracelulares/metabolismo , Microbioma Gastrointestinal , Isquemia Mesentérica/metabolismo , Mesentério/irrigação sanguínea , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Traumatismo por Reperfusão/metabolismo , Vênulas/metabolismo , Animais , Bacillus subtilis/patogenicidade , Adesão Celular , Células Cultivadas , Modelos Animais de Doenças , Escherichia coli/patogenicidade , Armadilhas Extracelulares/microbiologia , Feminino , Vida Livre de Germes , Interações Hospedeiro-Patógeno , Migração e Rolagem de Leucócitos , Leucócitos/metabolismo , Leucócitos/microbiologia , Masculino , Isquemia Mesentérica/microbiologia , Isquemia Mesentérica/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/microbiologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Vênulas/microbiologia , Vênulas/patologia
2.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998468

RESUMO

The commensal microbiota is a recognized enhancer of arterial thrombus growth. While several studies have demonstrated the prothrombotic role of the gut microbiota, the molecular mechanisms promoting arterial thrombus growth are still under debate. Here, we demonstrate that germ-free (GF) mice, which from birth lack colonization with a gut microbiota, show diminished static deposition of washed platelets to type I collagen compared with their conventionally raised (CONV-R) counterparts. Flow cytometry experiments revealed that platelets from GF mice show diminished activation of the integrin αIIbß3 (glycoprotein IIbIIIa) when activated by the platelet agonist adenosine diphosphate (ADP). Furthermore, washed platelets from Toll-like receptor-2 (Tlr2)-deficient mice likewise showed impaired static deposition to the subendothelial matrix component type I collagen compared with wild-type (WT) controls, a process that was unaffected by GPIbα-blockade but influenced by von Willebrand factor (VWF) plasma levels. Collectively, our results indicate that microbiota-triggered steady-state activation of innate immune pathways via TLR2 enhances platelet deposition to subendothelial matrix molecules. Our results link host colonization status with the ADP-triggered activation of integrin αIIbß3, a pathway promoting platelet deposition to the growing thrombus.


Assuntos
Difosfato de Adenosina/farmacologia , Plaquetas/efeitos dos fármacos , Colágeno Tipo I/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Trombose/microbiologia , Fator de von Willebrand/genética , Animais , Artérias/metabolismo , Artérias/patologia , Plaquetas/imunologia , Plaquetas/patologia , Adesão Celular/efeitos dos fármacos , Colágeno Tipo I/imunologia , Feminino , Microbioma Gastrointestinal/imunologia , Expressão Gênica , Vida Livre de Germes , Humanos , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/agonistas , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/imunologia , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/imunologia , Cultura Primária de Células , Simbiose/imunologia , Trombose/genética , Trombose/imunologia , Trombose/patologia , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Fator de von Willebrand/imunologia
3.
Blood ; 130(4): 542-553, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28572286

RESUMO

The symbiotic gut microbiota play pivotal roles in host physiology and the development of cardiovascular diseases, but the microbiota-triggered pattern recognition signaling mechanisms that impact thrombosis are poorly defined. In this article, we show that germ-free (GF) and Toll-like receptor-2 (Tlr2)-deficient mice have reduced thrombus growth after carotid artery injury relative to conventionally raised controls. GF Tlr2-/- and wild-type (WT) mice were indistinguishable, but colonization with microbiota restored a significant difference in thrombus growth between the genotypes. We identify reduced plasma levels of von Willebrand factor (VWF) and reduced VWF synthesis, specifically in hepatic endothelial cells, as a critical factor that is regulated by gut microbiota and determines thrombus growth in Tlr2-/- mice. Static platelet aggregate formation on extracellular matrix was similarly reduced in GF WT, Tlr2-/- , and heterozygous Vwf+/- mice that are all characterized by a modest reduction in plasma VWF levels. Defective platelet matrix interaction can be restored by exposure to WT plasma or to purified VWF depending on the VWF integrin binding site. Moreover, administration of VWF rescues defective thrombus growth in Tlr2-/- mice in vivo. These experiments delineate an unexpected pathway in which microbiota-triggered TLR2 signaling alters the synthesis of proadhesive VWF by the liver endothelium and favors platelet integrin-dependent thrombus growth.


Assuntos
Microbioma Gastrointestinal , Fígado/metabolismo , Transdução de Sinais , Trombose/metabolismo , Receptor 2 Toll-Like/metabolismo , Fator de von Willebrand/biossíntese , Animais , Plaquetas/metabolismo , Plaquetas/patologia , Vida Livre de Germes , Fígado/patologia , Camundongos , Camundongos Knockout , Agregação Plaquetária/genética , Trombose/genética , Trombose/patologia , Receptor 2 Toll-Like/genética , Fator de von Willebrand/genética
5.
mBio ; 10(5)2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641089

RESUMO

Atherosclerotic plaque development depends on chronic inflammation of the arterial wall. A dysbiotic gut microbiota can cause low-grade inflammation, and microbiota composition was linked to cardiovascular disease risk. However, the role of this environmental factor in atherothrombosis remains undefined. To analyze the impact of gut microbiota on atherothrombosis, we rederived low-density lipoprotein receptor-deficient (Ldlr-/- ) mice as germfree (GF) and kept these mice for 16 weeks on an atherogenic high-fat Western diet (HFD) under GF isolator conditions and under conventionally raised specific-pathogen-free conditions (CONV-R). In spite of reduced diversity of the cecal gut microbiome, caused by atherogenic HFD, GF Ldlr-/- mice and CONV-R Ldlr-/- mice exhibited atherosclerotic lesions of comparable sizes in the common carotid artery. In contrast to HFD-fed mice, showing no difference in total cholesterol levels, CONV-R Ldlr-/- mice fed control diet (CD) had significantly reduced total plasma cholesterol, very-low-density lipoprotein (VLDL), and LDL levels compared with GF Ldlr-/- mice. Myeloid cell counts in blood as well as leukocyte adhesion to the vessel wall at the common carotid artery of GF Ldlr-/- mice on HFD were diminished compared to CONV-R Ldlr-/- controls. Plasma cytokine profiling revealed reduced levels of the proinflammatory chemokines CCL7 and CXCL1 in GF Ldlr-/- mice, whereas the T-cell-related interleukin 9 (IL-9) and IL-27 were elevated. In the atherothrombosis model of ultrasound-induced rupture of the common carotid artery plaque, thrombus area was significantly reduced in GF Ldlr-/- mice relative to CONV-R Ldlr-/- mice. Ex vivo, this atherothrombotic phenotype was explained by decreased adhesion-dependent platelet activation and thrombus growth of HFD-fed GF Ldlr-/- mice on type III collagen.IMPORTANCE Our results demonstrate a functional role for the commensal microbiota in atherothrombosis. In a ferric chloride injury model of the carotid artery, GF C57BL/6J mice had increased occlusion times compared to colonized controls. Interestingly, in late atherosclerosis, HFD-fed GF Ldlr-/- mice had reduced plaque rupture-induced thrombus growth in the carotid artery and diminished ex vivo thrombus formation under arterial flow conditions.


Assuntos
Microbiota/fisiologia , Placa Aterosclerótica/metabolismo , Receptores de LDL/deficiência , Animais , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Masculino , Camundongos , Camundongos Mutantes , Microbiota/genética , Placa Aterosclerótica/genética , Receptores de LDL/genética
6.
J Am Heart Assoc ; 5(9)2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27577581

RESUMO

BACKGROUND: The gut microbiome is essential for physiological host responses and development of immune functions. The impact of gut microbiota on blood pressure and systemic vascular function, processes that are determined by immune cell function, is unknown. METHODS AND RESULTS: Unchallenged germ-free mice (GF) had a dampened systemic T helper cell type 1 skewing compared to conventionally raised (CONV-R) mice. Colonization of GF mice with regular gut microbiota induced lymphoid mRNA transcription of T-box expression in T cells and resulted in mild endothelial dysfunction. Compared to CONV-R mice, angiotensin II (AngII; 1 mg/kg per day for 7 days) infused GF mice showed reduced reactive oxygen species formation in the vasculature, attenuated vascular mRNA expression of monocyte chemoattractant protein 1 (MCP-1), inducible nitric oxide synthase (iNOS) and NADPH oxidase subunit Nox2, as well as a reduced upregulation of retinoic-acid receptor-related orphan receptor gamma t (Rorγt), the signature transcription factor for interleukin (IL)-17 synthesis. This resulted in an attenuated vascular leukocyte adhesion, less infiltration of Ly6G(+) neutrophils and Ly6C(+) monocytes into the aortic vessel wall, protection from kidney inflammation, as well as endothelial dysfunction and attenuation of blood pressure increase in response to AngII. Importantly, cardiac inflammation, fibrosis and systolic dysfunction were attenuated in GF mice, indicating systemic protection from cardiovascular inflammatory stress induced by AngII. CONCLUSION: Gut microbiota facilitate AngII-induced vascular dysfunction and hypertension, at least in part, by supporting an MCP-1/IL-17 driven vascular immune cell infiltration and inflammation.


Assuntos
Angiotensina II/farmacologia , Pressão Arterial/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes , Leucócitos/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Quimiocina CCL2/efeitos dos fármacos , Quimiocina CCL2/genética , Endotélio Vascular/efeitos dos fármacos , Hipertensão/microbiologia , Camundongos , Monócitos , NADPH Oxidase 2/efeitos dos fármacos , NADPH Oxidase 2/genética , Infiltração de Neutrófilos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/efeitos dos fármacos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA