Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(31): 41633-41641, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39047150

RESUMO

Confined geometries are used to increase measurement sensitivity to thermal boundary resistance at buried SiO2 interfaces with frequency-domain thermoreflectance (FDTR). We show that radial confinement of the transducer film and additional underlying material layers prevents heat from spreading and increases the thermal penetration depth of the thermal wave. Parametric analyses are performed with finite element methods and used to examine the extent to which the thermal penetration depth increases as a function of a material's effective thermal resistance and the degree of material confinement relative to the pump beam diameter. To our surprise, results suggest that the measurement technique is not always the most sensitive to the largest thermal resistor in a multilayer material. We also find that increasing the degree to which a material is confined improves measurement sensitivity to the thermal resistance across material interfaces that are buried 10s of µm to mm below the surface. These results are used to design experimental measurements of etched, 200 nm thick SiO2 films deposited on Al2O3 substrates, and offer an opportunity for thermal scientists and engineers to characterize the thermal resistance across a broader range of material interfaces within electronic device architectures that have historically been difficult to access via experiment.

2.
Rev Sci Instrum ; 93(8): 084904, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050106

RESUMO

Time delayed pump-probe measurement techniques, such as Time Domain Thermoreflectance (TDTR), have opened up a wealth of opportunities for metrology at ultra-fast timescales and nanometer length scales. For nanoscale thermal transport measurements, typical thermal lifetimes used to measure thermal conductivity and thermal boundary conductance span from sub-picosecond to ∼6 nanoseconds. In this work, we demonstrate a simple rearrangement and validation of a configuration that allows access to the entire 12.5 ns time delay available in the standard pulse train. By reconfiguring a traditional TDTR system so that the pump and probe arrive concurrently when the delay stage reaches its midpoint, followed by unwrapping the temporal scan, we obtain a dataset that is bounded only by the oscillator repetition rate. Sensitivity analysis along with conducted measurements shows that great increases in measurement sensitivity are available with this approach, particularly for thin films with low thermal conductivities.

3.
Rev Sci Instrum ; 88(7): 074903, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28764517

RESUMO

Simplified heat-transfer models are widely employed by heated probe scanning thermal microscopy techniques for determining thermal conductivity of test samples. These parameters have generally been assumed to be independent of sample properties; however, there has been little investigation of this assumption in non-contact mode, and the impact calibration procedures have on sample thermal conductivity results has not been explored. However, there has been little investigation of the commonly used assumption that thermal exchange parameters are sample independent in non-contact mode, or of the impact calibration procedures have on sample thermal conductivity results. This article establishes conditions under which quantitative, localized, non-contact measurements using scanning thermal microscopy with heated microprobes may be most accurately performed. The work employs a three-dimensional finite element (3DFE) model validated using experimental results and no fitting parameters, to determine the dependence of a heated microprobe thermal resistance as a function of sample thermal conductivity at several values of probe-to-sample clearance. The two unknown thermal exchange parameters were determined by fitting the 3DFE simulated probe thermal resistance with the predictions of a simplified probe heat transfer model, for two samples with different thermal conductivities. This calibration procedure known in experiments as the intersection method was simulated for sample thermal conductivities in the range of 0.1-50 W m-1 K-1 and clearance values in the 260-1010 nm range. For a typical Wollaston wire microprobe geometry as simulated here, both the thermal exchange radius and thermal contact resistance were found to increase with the sample thermal conductivity in the low thermal conductivity range while they remained approximately constant for thermal conductivities >1 W m-1 K-1, with similar trends reported for all clearance values investigated. It is shown that versatile sets of calibration samples for the intersection method should employ either medium range (1 W m-1 K-1) and (2 W m-1 K-1) thermal conductivities, or wide range (0.5 W m-1 K-1) and (50 W m-1 K-1). The medium range yielded results within 1.5%-20.4% of the expected values of thermal conductivity for specimens with thermal conductivity within 0.1-10 W m-1 K-1, while the wide range yielded values within 0.5%-19.4% in the same range.

4.
Nanoscale ; 7(37): 15404-12, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26335503

RESUMO

This work discusses measurement of thermal conductivity (k) of films using a scanning hot probe method in the 3ω mode and investigates the calibration of thermal contact parameters, specifically the thermal contact resistance (R(th)C) and thermal exchange radius (b) using reference samples with different thermal conductivities. R(th)C and b were found to have constant values (with b = 2.8 ± 0.3 µm and R(th)C = 44,927 ± 7820 K W(-1)) for samples with thermal conductivity values ranging from 0.36 W K(-1) m(-1) to 1.1 W K(-1) m(-1). An independent strategy for the calibration of contact parameters was developed and validated for samples in this range of thermal conductivity, using a reference sample with a previously measured Seebeck coefficient and thermal conductivity. The results were found to agree with the calibration performed using multiple samples of known thermal conductivity between 0.36 and 1.1 W K(-1) m(-1). However, for samples in the range between 16.2 W K(-1) m(-1) and 53.7 W K(-1) m(-1), calibration experiments showed the contact parameters to have considerably different values: R(th)C = 40,191 ± 1532 K W(-1) and b = 428 ± 24 nm. Finally, this work demonstrates that using these calibration procedures, measurements of both highly conductive and thermally insulating films on substrates can be performed, as the measured values obtained were within 1-20% (for low k) and 5-31% (for high k) of independent measurements and/or literature reports. Thermal conductivity results are presented for a SiGe film on a glass substrate, Te film on a glass substrate, polymer films (doped with Fe nano-particles and undoped) on a glass substrate, and Au film on a Si substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA